a.j.scholl@dpmms.cam.ac.uk

- 1. Let M/K be a finite Galois extension, and H_1 , H_2 subgroups of Gal(M/K), with fixed fields L_1 , L_2 . Find the fixed field of $H_1 \cap H_2$, and identify the subgroup of Gal(M/K) corresponding to the field $L_1 \cap L_2$.
- **2.** Let M/K be a finite Galois extension, and L, L' intermediate fields. Show that if $\sigma: L \xrightarrow{\sim} L'$ is a K-isomorphism, then there exists $\bar{\sigma} \in \operatorname{Gal}(M/K)$ whose restriction to L is σ .
- **3.** Let $L = \mathbb{F}_p(X, Y)$ be the field of rational functions in two variables (*i.e.* the field of fractions of $\mathbb{F}_p[X, Y]$) and K the subfield $\mathbb{F}_p(X^p, Y^p)$. Show that for any $f \in L$ one has $f^p \in K$, and deduce that L/K is not a simple extension.
- **4.** (i) Let x be algebraic over K. Show that there is only a finite number of intermediate fields $K \subset K' \subset K(x)$. [Hint: Consider the minimal polynomial of x over K'.]
- (ii) Let K be an infinite field, L/K a finite extension. Show that if there is only a finite number of intermediate fields $K \subset K' \subset L$ then L = K(x) for some $x \in L$.
- **5.** Show that $L = \mathbb{Q}(\sqrt{2}, i)$ is a Galois extension of \mathbb{Q} and determine its Galois group G. Write down the lattice of subgroups of G and the corresponding subfields of L.
- **6.** Show that $L = \mathbb{Q}(\sqrt[4]{2}, i)$ is a Galois extension of \mathbb{Q} , and show that $Gal(K/\mathbb{Q})$ is isomorphic to D_4 , the dihedral group of order 8 (sometimes also denoted D_8). Write down the lattice of subgroups of D_4 (be sure you have found them all!) and the corresponding subfields of L. Which intermediate fields are Galois over \mathbb{Q} ?
- 7. (i) What are the transitive subgroups of S_4 ? Find a monic polynomial over \mathbb{Z} of degree 4 whose Galois group is $V = \{e, (12)(34), (13)(24), (14)(23)\}$.
- (ii) Let $f \in \mathbb{Z}[X]$ be monic and separable of degree n. Suppose that the Galois group of f over \mathbb{Q} doesn't contain an n-cycle. Prove that the reduction of f modulo p is reducible for every prime p.
- (iii) Hence exhibit an irreducible polynomial over \mathbb{Z} whose reduction mod p is reducible for every p.
- **8.** (i) Let p be prime. Show that any transitive subgroup G of S_p contains a p-cycle. Show that if G also contains a transposition then $G = S_p$.
- (ii) Prove that the Galois group of $X^5 + 2X + 6$ is S_5 .
- (iii) Show that if $f \in \mathbb{Q}[X]$ is an irreducible polynomial of degree p which has exactly two non-real roots, then its Galois group is S_p . Deduce that for $m \in \mathbb{Z}$ sufficiently large,

$$f = X^p + mp^2(X-1)(X-2)\cdots(X-p+2) - p$$

has Galois group S_p .

- **9.** (i) Let p be an odd prime, and let $x \in \mathbb{F}_{p^n}$. Show that $x \in \mathbb{F}_p$ iff $x^p = x$, and that $x + x^{-1} \in \mathbb{F}_p$ iff either $x^p = x$ or $x^p = x^{-1}$.
- (ii) Apply (i) to a root of $X^2 + 1$ in a suitable extension of \mathbb{F}_p to show that that -1 is a square in \mathbb{F}_p if and only if $p \equiv 1 \pmod{4}$.
- (iii) Show that $x^4 = -1$ iff $(x + x^{-1})^2 = 2$. Deduce that 2 is a square in \mathbb{F}_p if and only if $p \equiv \pm 1 \pmod 8$.
- **10.** Find the Galois group of $X^4 + X^3 + 1$ over each of the finite fields \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_4 .

- **11.** Let p be a prime and $L = \mathbb{F}_p(X)$. Let a be an integer with $1 \le a < p$, and let $\sigma \in \operatorname{Aut}(L)$ be the unique automorphism such that $\sigma(X) = aX$. Determine the subgroup $G \subset \operatorname{Aut}(L)$ generated by σ , and its fixed field L^G .
- **12.** Compute the Galois group of $X^5 2$ over \mathbb{Q} .
- **13.** Let $f(X) = X^n + bX + c = \prod_{i=1}^n (X x_i)$, with $n \ge 2$. Show that

$$x_i f'(x_i) = (n-1)b \left(\frac{-nc}{(n-1)b} - x_i\right)$$

and deduce that

$$Disc(f) = (-1)^{n(n-1)/2} ((1-n)^{n-1}b^n + n^n c^{n-1}).$$

- **14.** Write $a_n(q)$ for the number of irreducible monic polynomials in $\mathbb{F}_q[X]$ of degree exactly n.
- (i) Show that an irreducible polynomial $f \in \mathbb{F}_q[X]$ of degree d divides $X^{q^n} X$ if and only if d divides n.
- (ii) Deduce that $X^{q^n} X$ is the product of all irreducible monic polynomials of degree dividing n, and that

$$\sum_{d|n} da_d(q) = q^n.$$

- (iii) Calculate the number of irreducible polynomials of degree 6 over \mathbb{F}_2 .
- (iv) If you know about the Möbius function $\mu(n)$, use the Möbius inversion formula to show that

$$a_n(q) = \frac{1}{n} \sum_{d|n} \mu(n/d) q^d.$$

- **15.** Let K be a field of characteristic p > 0. Let $a \in K$, and let $f \in K[X]$ be the polynomial $f(X) = X^p X a$. Show that f(X + b) = f(X) for every $b \in \mathbb{F}_p \subset K$. Now suppose that f does not have a root in K, and let L/K be a splitting field for f over K. Show that L = K(x) for any $x \in L$ with f(x) = 0, and that L/K is Galois, with Galois group isomorphic to $\mathbb{Z}/p\mathbb{Z}$.
- **16.** (i) Let $f \in K[T]$ be a monic separable polynomial of degree n, with roots x_i in a splitting field L. Let

$$g_i(T) = \frac{f(T)}{f'(x_i)(T - x_i)} \qquad (1 \le i \le n).$$

Show that:

$$g_1 + \dots + g_n = 1 \tag{1}$$

$$g_i g_j \equiv \begin{cases} 0 \mod(f) & \text{if } j \neq i \\ g_i \mod(f) & \text{if } j = i \end{cases}$$
 (2)

(Equation (1) is the "partial fractions" decomposition of 1/f(T).)

- (ii) Let L/K be a finite Galois extension with Galois group $G = \{\sigma_1, \ldots, \sigma_n\}$, with $\sigma_1 = id$. Let $x \in L$ be a primitive element with minimal polynomial $f \in K[T]$, and $x_i = \sigma_i(x)$. Let $\mathbf{A} = (A_{ij})$ be the matrix with entries $A_{ij} = \sigma_i \sigma_j g_1$. Use (2) to show that $\mathbf{A}^T \mathbf{A} \equiv \mathbf{I} \mod (f)$.
- (iii) Assume that K is infinite. Use (ii) to show that there exists $b \in K$ such that $\det(\sigma_i \sigma_j g_1(b)) \neq 0$. Deduce that if $y = g_1(b)$ then $\{\sigma(y) \mid \sigma \in G\}$ is a K-basis for L.

Such a basis $\{\sigma(y)\}$ is said to be a *normal basis* for L/K, and the result just proved is the *Normal Basis Theorem*.