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1 Revision from Groups, Rings and Fields

1.1 Field extensions

Suppose K and L are fields. Recall that a non-zero ring homomorphism θ : K → L is necessarily
injective (since ker θ ¢ K and so ker θ = {0}) and satisfies θ(a/b) = θ(a)/θ(b). Therefore θ is a
homomorphism of fields.

Definition

A field extension of K is given by a field L and a non-zero homomorphism θ : K ↪→ L.
Such a θ will also be called an embedding of K into L.

Remark

In fact, we often identify K with its image θ(K) ⊆ L, since θ : K → θ(K) is an isomor-
phism, and denote the extension by L/K or K ↪→ L.

Lemma 1.1

If {Ki}i∈I is any collection of subfields of a field L, then
⋂

i∈I Ki is also a subfield of L.

Proof

Easy exercise from the axioms.

Definition

Given a field extension L/K and an arbitrary subset S ⊆ L, the subfield of L generated
by K and S is

K(S) =
⋂
{subfields M ⊆ L |M ⊇ K, M ⊇ S}.

The lemma above implies that it is a subfield — it is the smallest subfield containing K
and S.

Notation

If S = {α1, . . . , αn} we write K(α1, . . . , αn) for K(S).

Definition

A field extension L/K is finitely generated if for some n there exist α1, . . . , αn ∈ L such
that L = K(α1, . . . , αn). If L = K(α) for some α ∈ L, the extension is simple.

Definition

Given a field extension L/K, an element α ∈ L is algebraic over K if there exists a non-zero
polynomial f ∈ K[X] such that f(α) = 0 in L. Otherwise, α is transcendental over K.

If α is algebraic, the monic polynomial

f = Xn + an−1X
n−1 + · · ·+ a1X + a0

of smallest degree such that f(α) = 0 is called the minimal polynomial of f . Clearly such
an f is unique and irreducible.
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Definition

A field extension L/K is algebraic if every α ∈ L is algebraic over K. It is pure transcen-
dental if every α ∈ L \K is transcendental over K.

1.2 Classification of simple algebraic extensions

Given a field K and an irreducible polynomial f ∈ K[X], recall that the quotient ring K[X]/(f)
is a field. Therefore we have a simple algebraic field extension K ↪→ K(α) = K[X]/(f), α
denoting the image of X under the quotient map.

Also, for any simple algebraic field extension K ↪→ K(α) let f be the minimal polynomial of α
over K. We then have a commutative diagram

K //

!!DDDDDDDD K[X]

²²
K(α)

inducing an isomorphism of fields K[X]/(f) ∼= K(α). Thus up to field isomorphisms, any simple
algebraic extension of K is of the form K ↪→ K[X]/(f) for some irreducible f ∈ K[X].

Therefore, classifying simple algebraic extensions of K (up to isomorphism) is equivalent to
classifying irreducible monic polynomials in K[X].

1.3 Tests for irreducibility

Let R be a UFD and K its field of fractions, e.g. R = Z, K = Q.

Lemma 1.2 (Gauss’ Lemma)

A polynomial f ∈ R[X] is irreducible in R[X] iff it is irreducible in K[X].

Theorem 1.3 (Eisenstein’s Criterion)

Suppose
f = anXn + an−1X

n−1 + · · ·+ a1X + a0 ∈ R[X]

and there exists an irreducible p ∈ R such that p - an, p | ai for i = n−1, . . . , 0 and p2 - a0.
Then f is irreducible in R[X] and hence irreducible in K[X].

Proofs

See ‘Groups, Rings and Fields’.
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1.4 The degree of an extension

Definition

If L/K is a field extension, then L has the structure of a vector space over K. The
dimension of the vector space is called the degree of the extension, written [L : K].

We say that L is finite over K if [L : K] is finite.

Theorem 1.4

Given a field extension L/K and an element α ∈ L, α is algebraic over K iff K(α)/K is
finite. When α is algebraic, [K(α) : K] is the degree of the minimal polynomial of α.

Proof

(⇐) If [K(α) : K] = n, then 1, α, . . . , αn are linearly dependent over K, so there exists a
polynomial f ∈ K[X] with f(α) = 0, as claimed.

(⇒) If α is algebraic over K with minimal polynomial f , then

f(α) = αn + an−1α
n−1 + · · ·+ a1α + a0 = 0 (∗)

in L.

Suppose g ∈ K[X] with g(α) 6= 0. Since f is irreducible we have hcf(f, g) = 1. Euclid’s
algorithm implies that there exist x, y ∈ K[X] such that xf + yg = 1 and so y(α)g(α) = 1
in L (since f(α) = 0). So g(α)−1 ∈ 〈1, α, α2, . . .〉, the subspace of L generated by powers
of α.

Now K(α) consists of all elements of the form h(α)/g(α) for h, g ∈ K[X] polynomials,
g(α) 6= 0, and so K(α) is spanned as a K-vector space by 1, α, α2, . . . and hence from
relation (∗) by 1, α, . . . , αn−1.

Minimality of n implies that the spanning set 1, α, . . . , αn−1 is a basis and hence
[K(α) : K] = n.

Proposition 1.5 (Tower Law)

Given a tower of field extensions K ↪→ L ↪→ M ,

[M : K] = [M : L][L : K].

Proof

Let (ui)i∈I , be a basis for M over L and let (vj)j∈J , be a basis for be a basis for L over K.
We shall show that (uivj)i∈I,j∈J is a basis for M over K, from which the result follows.

First we show that the uivj span M over K. Now any vector x ∈ M may be written as a
linear combination of the ui, that is

x =
∑

i∈I

µiui

for some µi ∈ L. But since the vj span L over K we can write each µi as a linear
combination of the vj , that is

µi =
∑

j∈J

λijvj
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for some λij ∈ K. But then
x =

∑

i∈I
j∈J

λijuivj

as required.

Now we shall show that the uivj are linearly independent over K. Suppose that we have
∑

i∈I
j∈J

λijuivj = 0

for some λij ∈ L. But then
∑

i∈I


∑

j∈J

λijvj


ui = 0

and then since the ui are linearly independent over L we must have
∑

j∈J

λijvj = 0

for each j ∈ J . But then since the vj are linearly independent over K we must have that
λij = 0 for each i ∈ I, j ∈ J , as required.

Corollary 1.6

If L/K is finitely generated, L = K(α1, . . . , αn), with each αi algebraic over K, then L/K
is a finite extension.

Proof

Each αi is algebraic over K(α1, . . . , αi−1) and so by (1.4) we have that for each i,
[K(α1, . . . , αi) : K(α1, . . . , αi−1)] is finite. Induction and the Tower Law give the required
result.

1.5 Splitting fields

Recall that if L/K is a field extension and f ∈ K[X] we say that f splits (completely) over L
if it may be written as a product of linear factors

f = k(X − α1) · · · (X − αn),

where k ∈ K and αi ∈ L. L is called a splitting field for f if f fails to split over any proper
subfield of L, that is, if L = K(α1, . . . , αn).

Remark

Splitting fields always exist.

For if g is any irreducible factor of f , then K[X]/(g) = K(α) is an extension of K for
which g(α) = 0, where α denotes the image of X. The remainder theorem implies that g
(and hence f) splits off a linear factor. Induction implies that there exists a splitting field
L for f , with [L : K] ≤ n! (n = deg f) by (1.5).
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Splitting fields are unique up to isomorphisms over K.

Proposition 1.7

Suppose θ : K → K ′ is an isomorphism of fields, with the polynomial f ∈ K[X]
corresponding to g = θ(f) ∈ K ′[X]. Then any splitting field L of f over K is isomorphic
over θ to any splitting field L′ of g over K ′, and we have the commutative diagram

L
θ̃−−−−→ L′x

x
K

θ−−−−→ K ′

Proof

Since f splits in L, so does any irreducible factor f1. Let g1 = θ(f1) be the corresponding
irreducible factor of g. Observe that g, and hence g1, splits in L′. Choose a root α ∈ L of
f1 and a root β ∈ L′ of g1.

Then there exists an isomorphism of fields, θ1, determined by the commutative diagram

K(α) θ1−−−−→ K ′(β)x
x

K[X]/(f1) −−−−→ K ′[X]/(g1)

with θ1(α) = β. Hence we have the diagram

L L′x
x

K(α) θ1−−−−→ K ′(β)x
x

K
θ−−−−→ K ′

Now set f = (X − α)h ∈ K(α)[X] and g = (X − β)l ∈ K ′(β)[X]. Then

1. l = θ1(h) under the induced isomorphism K(α)[X] → K ′(β)[X].

2. L is a splitting field for h over K(α) and L′ is a splitting field for l over K ′(β).

Therefore the required result follows by induction on the degree of the polynomial.

Remark

Thus we have proved existence and uniqueness of splitting fields for any finite set of
polynomials — just take the splitting field of the product.

With appropriate use of Zorn’s Lemma (see §3) we can prove existence and uniqueness of
splitting fields for any set of polynomials.
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2 Separability

2.1 Separable polynomials and formal differentiation

Definition

An irreducible polynomial f ∈ K[X] is separable over K if it has distinct zeros in a splitting
field L, that is

f = k(X − α1) · · · (X − αn)

in L[X], with k ∈ K and αi ∈ L all distinct. By uniqueness (up to isomorphism) of
splitting fields, this is independent of any choices.

An arbitrary polynomial f ∈ K[X] is separable over K if all its irreducible factors are. If
f is not separable, it is called inseparable.

Definition

Formal differentiation is a linear map D : K[X] → K[X] of vector spaces over K, defined
by

D(Xn) = nXn−1

for all n ≥ 0.

Claim

If f, g ∈ K[X], then
D(fg) = fD(g) + gD(f).

Proof

Using linearity we can reduce the theorem to the case when f and g are monomials, when
it is a trivial check.

Notation

From now on, we write f ′ for D(f).

Lemma 2.1

A non-zero polynomial f ∈ K[X] has a repeated zero in a splitting field L iff f and f ′ have
a common factor in K[X] of degree ≥ 1.

Proof

(⇒) Suppose f has a repeated zero in a splitting field L, that is f = (X − α)2g in L[X]. Then
f ′ = (X −α)2g′ − 2(X −α)g. So f and f ′ have a common factor (X −α) in L[X], and so
f and f ′ have a common factor in K[X], namely the minimal polynomial for α over K.

(⇐) Suppose f has no repeated zeros in a splitting field L. We shall show that f and f ′ are
coprime in L[X] and hence also in K[X].

Since f splits in L it is sufficient to prove that (X − α) | f in L[X] implies (X − α) - f ′.
Writing f = (X − α)g, we observe that (X − α) - g, but f ′ = (X − α)g′ + g and so
(X − α) - f ′.

7



Suppose now that f ∈ K[X] is irreducible. Then (2.1) says that f has repeated zeros iff f ′ = 0.
But if

f = anXn + an−1X
n−1 + · · ·+ a1X + a0

then
f ′ = nanXn−1 + (n− 1)an−1X

n−2 + · · ·+ a1

and therefore f ′ = 0 iff iai = 0 for all i > 0. So if deg f = n > 0 then f ′ = 0 iff charK = p > 0
and p | i whenever ai 6= 0.

So if charK = 0, all polynomials are separable. If charK = p > 0, an irreducible polynomial
f ∈ K[X] is inseparable iff f ∈ K[Xp].

2.2 Separable extensions

Definition

Given a field extension L/K and an element α ∈ L, α is separable over K if its minimal
polynomial fα ∈ K[X] is separable.

The extension is called separable if α is separable for all α ∈ L. Otherwise the extension
is called inseparable.

Example

Let L = Fp(t), the field of rational functions over the finite field Fp with p elements. Let
K = Fp(tp).

Then the extension L/K is finite but inseparable, since the minimal polynomial of t over
K is Xp − tp, which splits as (X − t)p over L[X].

Lemma 2.2

If K ↪→ L ↪→ M is a tower of field extensions with M/K separable, then both M/L and
L/K are separable.

Proof

Obviously L/K is separable, since any element α ∈ L is separable over K as an element
of M .

Now given α ∈ M , the minimal polynomial of α over L divides the minimal polynomial of
α over K, and so has distinct zeros in any splitting field.

Proposition 2.3

Let K(α)/K be a finite simple extension, with f ∈ K[X] the minimal polynomial for α.
Given a field extension θ : K ↪→ L, the number of embeddings θ̃ : K(α) ↪→ L extending θ
is precisely the number of distinct roots of θ(f) in L.

In particular, there exist at most n = [K(α) : K] such embeddings, with equality iff θ(f)
splits completely over L and f is separable.
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Proof

An embedding K(α) ↪→ L extending θ must send α to a zero of θ(f), and it is determined
by this information.

Furthermore, if β is a root of θ(f) in L then the ring homomorphism K[X] → L sending
g to θ(g)(β) factors to give an embedding K(α) ∼= K[X]/(f) ↪→ L extending θ.

Therefore the embeddings K(α) ↪→ L extending θ are in one-to-one correspondence with
the roots of θ(f) in L. So there exist at most n = deg(f) = [K(α) : K] (by (1.4)) such
embeddings, with equality iff θ(f) has n distinct roots in L iff θ(f) splits completely over
L and f is separable.

Theorem 2.4

Suppose L = K(α1, . . . , αr) is a finite extension of K, and M/K is any field extension for
which the minimal polynomials of the αi all split. Then

1. The number of embeddings L ↪→ M extending K ↪→ M is at most [L : K]. If each αi

is separable over K(α1, . . . , αi−1) then we have equality.

2. If the number of embeddings L ↪→ M extending K ↪→ M is [L : K] then L/K is
separable.

Hence if each αi is separable over K(α1, . . . , αi−1) then L/K is separable. (By (2.2) this
happens, for example, when each αi is separable over K.)

Proof

1. This follows by induction on r:

(2.3) implies that the claim holds for r = 1.

Suppose that it is true for r − 1 (r > 1). Then there exist at most [K(α1, . . . , αr−1) : K]
embeddings K(α1, . . . , αr−1) ↪→ M extending K ↪→ M , with equality if each αi (i < r) is
separable over K(α1, . . . , αi−1).

Now for each embedding K(α1, . . . , αr−1) ↪→ M , (2.3) implies that there exist at most
[K(α, . . . , αr) : K(α1, . . . , αr−1)] embeddings K(α1, . . . , αr) ↪→ M extending the given
one, with equality if αr separable over K(α1, . . . , αr−1).

The Tower Law then gives the result.

2. Suppose α ∈ L. Then (2.3) implies that there exist at most [K(α) : K] embeddings
K(α) ↪→ M extending K ↪→ M and (1) implies that for each such embedding, there exist
at most [L : K(α)] embeddings L ↪→ M extending it. By the Tower Law, our assumption
implies that both these must be equalities. In particular, (2.3) implies that α must be
separable.

Corollary 2.5

If K ↪→ L ↪→ M is a tower of finite extensions with M/L and L/K separable, then so too
is M/K.
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Proof

Let α ∈ M with (separable) minimal polynomial f ∈ L[X] over L. Write

f = Xn + an−1X
n−1 + · · ·+ a1X + a0,

where each ai is separable over K.

The minimal polynomial of α over K(a0, . . . , an−1) is still f , and so α is separable over
K(a0, . . . , an−1). But then (2.4) implies that K(a0, . . . , an−1, α)/K is separable, and so α
is separable over K.

2.3 The Primitive Element Theorem

Lemma 2.6

If K is a field and G is a finite subgroup of K∗, the group of units of K, then G is cyclic.

Proof

See ‘Groups, Rings and Fields’.

Theorem 2.7 (Primitive Element Theorem)

1. If L = K(α, β) is a finite extension of K with β separable over K, then there exists θ ∈ L
such that L = K(θ).

2. Any finite separable extension is simple.

Proof

1. ⇒ 2. If L/K is a finite separable extension, then L = K(α1, . . . , αr) with each αi separable over
K, so (2) follows from (1) by induction.

1. If K is finite then so too is L, and so (2.6) implies that L∗ is cyclic, say L∗ = 〈θ〉. Then
L = K(θ), as required.

So assume that K is infinite, and let f and g be the minimal polynomials for α and β
respectively.

Let M be a splitting field extension for fg over L. Identifying L with its image in M , the
distinct zeros of f are α = α1, α2, . . . , αr, where r ≤ deg f . Since β is separable over K, g
splits into distinct linear factors over M and has zeros β = β1, β2, . . . , βs, where s = deg g.

Then choose c ∈ K such that the elements αi + cβj are distinct (this is possible since there
are only finitely many values αi − αi′ , βj − βj′) and set θ = α + cβ.

Let F ∈ K(θ)[X] be given by F (X) = f(θ−cX). We have g(β) = 0 and F (β) = f(α) = 0.
So F and g have a common zero, namely β. Any other common zero would be a βj with
j > 1, but then F (βj) = f(α + c(β − βj)). Since by assumption α + c(β − βj) is never an
αi, this cannot be zero.

The linear factors of g being distinct, we deduce that (X − β) is the h.c.f. of F and g in
M [X]. However, the minimal polynomial h of β over K(θ) then divides both F and g in
K(θ)[X] and hence also in M [X]. This implies that h = X − β and so β ∈ K(θ).

Therefore α = θ − cβ ∈ K(θ) and so K(α, β) = K(θ), as required.
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2.4 Trace and norm

Definition

Let L/K be a finite field extension and let α ∈ L. Multiplication by α defines a linear map
θα : L → L of vector spaces over K. The trace and norm of α, TrL/K(α) and NL/K(α),
are defined to be the trace and determinant of θα, i.e. of any matrix representing θα with
respect to some basis for L/K.

Proposition 2.8

Suppose r = [L : K(α)] and

f = Xn + an−1X
n−1 + · · ·+ a1X + a0

is the minimal polynomial of α over K. If we define bi = (−1)(n−i)ai, then

TrL/K(α) = rbn−1 and NL/K(α) = b0
r.

Proof

This follows from the claim that the characteristic polynomial of θα is f r.

We prove this first for the case r = 1, i.e. L = K(α). Take a basis 1, α, α2, . . . , αn−1

(n = [K(α) : K]) for L/K. With respect to this basis, θα has the matrix

M =




−a0

1 −a1

1 −a2

. . .
...

1 −an−1




.

The characteristic polynomial of θα is then

det




X a0

−1 X a1

−1 X a2

. . . . . .
...

−1 X + an−1




= det




f
−1 X a1

−1 X a2

. . . . . .
...

−1 X + an−1




which equals f , as claimed.

In the general case, choose a basis 1 = β1, β2, . . . , βr for L over K(α) and take a basis for
L/K given by

1, α, α2, . . . , αn−1

β2, αβ2, α2β2, . . . , αn−1β2
...

βr, αβr, α2βr, . . . , αn−1βr

(c.f. proof of the Tower Law). With respect to this basis, θα has the matrix



M
M

. . .
(r times)

M


 ,

with characteristic polynomial f r, which proves the claim and hence the proposition.
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3 Algebraic Closures

3.1 Definitions

Definition

A field K is algebraically closed if any f ∈ K[X] splits into linear factors over K.

This is equivalent to saying, “there do not exist non-trivial algebraic extensions of K”, i.e.
any algebraic extension K ↪→ L is an isomorphism.

An extension L/K is called an algebraic closure of K if L/K is algebraic and L is alge-
braically closed.

Lemma 3.1

If L/K is algebraic and every polynomial in K[X] splits completely over L, then L is an
algebraic closure of K.

Proof

It is required to prove that L is algebraically closed. Suppose L(α)/L is a finite extension
and let

f = Xn + an−1X
n−1 + · · ·+ a1X + a0

be the minimal polynomial of α over L. Let K ′ = K(a0, . . . , an−1). Then the extension
K ′(α)/K ′ is finite, and since each ai ∈ L is algebraic over K the Tower Law implies that
K ′/K and hence K ′(α)/K is finite. But then α is algebraic over K and so α ∈ L (since
the minimal polynomial of α over K splits completely over L).

Example

Let A be the set of algebraic numbers in C, i.e.

A = {α ∈ C | α algebraic over Q}.

Then A is a subfield of C. For if α, β ∈ A, the Tower Law and (1.4) imply that Q(α, β)/Q
is a finite extension. Therefore for any combination γ = α+β, α−β, αβ, α/β (when β 6= 0)
we have [Q(γ)/Q] finite, and so γ is algebraic over Q and hence γ ∈ A.

Therefore A = Q̄, the algebraic closure of the rationals.

3.2 Existence and uniqueness of algebraic closures

Theorem 3.2 (Existence of algebraic closures)

For any field K there exists an algebraic closure.

Proof

Let A be the set of all pairs α = (f, j), where f is an irreducible monic polynomial in
K[X] and 1 ≤ j ≤ deg f . For each α = (f, j) we introduce an indeterminate Xα = Xf,j

and consider the polynomial ring K[Xα | α ∈ A] in all these indeterminates.
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Let bf,l, for 0 ≤ l < deg f , denote the coefficients of

f̃ = f −
deg f∏

j=1

(X −Xf,j)

in K[Xα | α ∈ A]. Let I be the ideal generated by all these elements bf,l over all f, l and
set R = K[Xα | α ∈ A]/I.

The idea here is that we are forcing all the monic polynomials f ∈ K[X] to split completely,
with the indeterminates Xf,j representing the roots of f .

Claim

I 6= K[Xα | α ∈ A], and so R 6= 0.

Proof

If we did have equality, then there exists a finite sum

g1bf1,l1 + · · ·+ gNbfN ,lN = 1 (∗)

in K[Xα | α ∈ A]. Let S be a splitting field extension for f1, . . . , fN . For each i, fi

splits in S as

fi =
deg fi∏

j=1

(X − αij).

Let θ : K[Xα | α ∈ A] → S be the evaluation map (a ring homomorphism) send-
ing Xfi,j to αij for each i, j and all other indeterminates Xα to 0. Let θ̃ be the
homomorphism induced from K[Xα | α ∈ A][X] to S[X] by θ. Then

θ̃(f̃i) = θ̃(fi)−
deg f∏

j=1

θ̃(X −Xfi,j) = fi −
deg fi∏

j=1

(X − αij) = 0.

But then θ(bfi,j) = 0 for each i, j, since the bfi,j are the coefficients of f̃ . Then, taking
the image of the relation (∗) under θ, we get 0 = 1.

Thus R 6= 0, and we may use Zorn’s Lemma to choose a maximal ideal m of R (see
handout). Let L = R/m. This gives a field extension K ↪→ L as the composite of the ring
homomorphisms

K ↪→ K[Xα | α ∈ A] → R → L.

Claim

L is an algebraic closure of K with this inclusion map.

Proof

First observe that L/K is algebraic, since it is generated by the images xf,j of the
Xf,j , which by construction satisfy f(xf,j) = 0. Any element of L involves only
finitely many of the xf,j , and so by the Tower Law is algebraic over K.
Moreover, by assumption any f ∈ K[X] splits completely over L, and so the result
follows from (3.1).
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Proposition 3.3

Suppose i : K ↪→ L is an embedding of K into an algebraicallly closed field L. For any
algebraic field extension φ : K ↪→ M , there exists an embedding j : M ↪→ L extending i,
i.e. such that the following diagram

M
j

ÃÃA
AA

AA
AA

A

K
i

//

φ
>>||||||||

L

commutes.

Proof

Let S denote all pairs (A, θ), where A is a subfield of M containing φ(K) and θ is an
embedding of A into L such that θ ◦φ = i. Clearly S 6= ∅, since A = φ(K) is a component
of an element of S.

We shall use the partial order on S given by (A1, θ1) ≤ (A2, θ2) if A1 is a subfield of A2

and θ2|A1 = θ1.

If C is a chain in S, let B =
⋃{A | (A, θ) ∈ C}. Then B is a subfield of M . Moreover, we

can define a function ψ from B to L as follows. If α ∈ B, then α ∈ A for some (A, θ) ∈ C,
and so we let ψ(α) = θ(α). This is clearly well-defined, and gives an embedding of B into
L. Thus (B, ψ) is an upper bound for C.
Therefore Zorn’s Lemma implies that S has a maximal element (A, θ).

It is now required to prove that A = M . Given an element α ∈ M , α is algebraic over A so
let f be its minimal polynomial over A. Then θ(f) splits over L (since L is algebraically
closed), say

θ(f) = (X − β1) · · · (X − βr).

Since θ(f)(β1) = 0, there exists an embedding A(α) ∼= A[X]/(f) ↪→ L extending θ and
sending α to β1 (c.f. proof of (2.3)). But then the maximality of (A, θ) implies that α ∈ A
and hence M = A.

Corollary 3.4 (Uniqueness of algebraic closures)

If i1 : K ↪→ L1, i2 : K ↪→ L2 are two algebraic closures of K, then there exists an
isomorphism θ : L1 → L2 such that the following diagram

L1

θ

ÃÃA
AA

AA
AA

A

K
i2

//

i1
>>}}}}}}}}

L2

commutes.

Proof

By (3.3), there exists an embedding θ : L1 ↪→ L2 such that i2 = θ ◦ i1. Since L2/K is
algebraic, so too is L2/L1, but then since L1 is algebraically closed, L2

∼= L1.
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Remark

For general K the construction and uniqueness of the algebraic closure K̄ has involved
Zorn’s Lemma, so it is preferable to avoid the use of K̄ wherever possible (which for finite
extensions we can).

Note, however, that we can construct C by ‘bare hands’, without the use of the Axiom of
Choice, so our objection is not valid for K = Q, any number field, or R.
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4 Normal Extensions and Galois Extensions

4.1 Normal extensions

Definition

An extension L/K is normal if every irreducible polynomial f ∈ K[X] having a root in L
splits completely over L.

Example

Q( 3
√

2)/Q is not normal since X3 − 2 doesn’t split completely over any real field.

Theorem 4.1

An extension L/K is normal and finite iff L is a splitting field for some polynomial
f ∈ K[X].

Proof

(⇒) Suppose L/K is normal and finite. Then L = K(α1, . . . , αr), with αi having minimal
polynomial fi ∈ K[X], say.

Let f = f1 · · · fr. We claim that L is the splitting field for f over K. For each fi is
irrreducible with a zero αi in L and so each fi, and hence f , splits completely over L, by
the normality of L. Since L is generated by K and the zeros of f it is a splitting field for
f over K.

(⇐) Suppose L is the splitting field of some g ∈ K[X]. The extension is obviously finite.

To prove normality, it is required to prove that given an irreducible polynomial f ∈ K[X]
with a zero in L, f splits completely over L.

Suppose M/L is a splitting field extension for a polynomial f (thought of as an element of
L[X]) and that α1 and α2 are zeros of f in M . Then we claim that [L(α1) : L] = [L(α2) : L].

This yields the required result, since we may choose α1 ∈ L by assumption and so for any
root α2 of f in M we have [L(α2) : L] = 1, i.e. α2 ∈ L, and so f splits completely over L.

To prove the claim, consider the following diagram of field extensions:

M

L(α1)

xxxxxxxx
L(α2)

FFFFFFFF

L

FFFFFFFFF

xxxxxxxxx

K(α1) K(α2)

K

FFFFFFFFF

xxxxxxxxx
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Observe the following:

1. Since f is irreducible, (1.4) implies that K(α1) ∼= K(α2) over K, and in particular
[K(α1) : K] = [K(α2) : K].

2. For i = 1, 2, L(αi) is a splitting field for g over K(αi), and so by (1.7)

L(α1)
∼=−−−−→ L(α2)x

x
K(α1)

∼=−−−−→ K(α2)

In particular we deduce that [L(α1) : K(α1)] = [L(α2) : K(α2)].

Now the Tower Law gives the result.

4.2 Normal closures

Definition

We know that any finite extension L/K is finitely generated, L = K(α1, . . . , αr) say. Let
fi ∈ K[X] be the minimal polynomial for αi.

Now let M/L be the splitting field for f = f1 · · · fr. By (4.1) M/L is normal. We define
M/K to be the normal closure of L/K.

Remark

Any normal extension N/L must split each of the fi, and so for some M ′ ⊆ N , M ′/L is a
splitting field for f and so is isomorphic over L to M/L (by (1.7)).

Thus the normal closure of L/K is characterized as the minimal extension M/L such that
M/K is normal, and it is unique up to isomorphism over L.

Definition

Let L/K and L′/K be field extensions. A K-embedding of L into L′ is an embedding
which fixes K.

In the case where L = L′ and L/K is finite, then the embedding is also surjective and so is
an automorphism. In this case we call the K-embedding a K-automorphism. We denote
the group of K-automorphisms of L/K by Aut(L/K).

Theorem 4.2

Let L/K be a finite extension, and let θ : L ↪→ M with M/L normal. Let L′ = θ(L) ⊆ M .
Then

1. The number of distinct K-embeddings L ↪→ M is at most [L : K], with equality iff
L/K is separable.

2. L/K is normal iff every K-embedding φ : L ↪→ M has image L′ iff every K-embedding
φ : L ↪→ M is of the form φ = θ ◦ α for some α ∈ Aut(L/K).
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Proof

1. This follows directly from (2.4).

2. First observe that

(a) L/K is normal iff L′/K is normal.

(b) Any K-embedding φ : L ↪→ M gives rise to a K-embedding ψ : L′ ↪→ M , where
ψ = φ ◦ θ−1, and vice versa.

(c) Any K-embedding φ : L ↪→ M with image L′ gives rise to an automorphism α of
L/K such that φ = θ ◦ α. Conversely, any φ of this form is a K-embedding with
image L′.

Hence we are required to prove that L′/K is normal iff any K-embedding ψ : L′ ↪→ M has
image L′.

(⇒) Suppose α ∈ L′ with minimal polynomial f ∈ K[X]. If L′/K normal then f splits
completely over L′. Now if ψ : L′ ↪→ M is a K-embedding then ψ(α) is another root
of f , and hence ψ(α) ∈ L′. Thus ψ(L′) ⊆ L′, but since L′/K is finite, ψ(L′) = L′.

(⇐) Suppose f ∈ K[X] is an irreducible polynomial with a zero α ∈ L′. By assumption,
M contains a normal closure M ′ of L/K and so f splits completely over M ′. Also,
since L′/K is finite, L′ ⊆ M ′.
Let β ∈ M ′ be any other root of f . Then there exists an isomorphism over K,
K(α) ∼= K[X]/(f) ∼= K(β). Since M ′ is a splitting field for some polynomial F over
K, it is also a splitting field for F over K(α) or K(β). So (1.7) implies that the
isomorphism K(α) ∼= K(β) extends to an isomorphism K(α) ⊆ M ′ → M ′ ⊇ K(β)
with K(α) → K(β), which in turn restricts to a K-embedding L′ ↪→ M , sending α
to β. Therefore, β ∈ L′.
Since this is true for all roots of β, f splits completely over L′, that is, L′/K is
normal.

Corollary 4.3

If L/K is finite then |Aut(L/K)| ≤ [L : K] with equality iff L/K is normal and separable.

Proof

Let M/L be a normal extension. Then by (4.2),

|Aut(L/K)| = |{K-embeddings L ↪→ M of the form θ ◦ α, α ∈ Aut(L/K)}|
≤ |{K-embeddings L ↪→ M}|
≤ [L : K],

with equality iff L/K is normal and separable.
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4.3 Fixed fields and Galois extensions

From now on, we’ll only deal with field extensions L/K where K ⊆ L — we don’t lose any
generality from doing this as for any extension L/K we can always identify K with its image
in L.

Definition

If L is a field and G is any finite group of automorphisms of L then we write LG ⊆ L for
the fixed field

LG = {x ∈ L | g(x) = x for all g ∈ G}.
It is easy to check that this is a subfield.

Definition

We say that a finite extension L/K is Galois if K = LG for some finite group of automor-
phisms G. If this is the case then it is clear that G ≤ Aut(L/K). In fact we shall show
that G = Aut(L/K).

Proposition 4.4

Let G be a finite group of automorphisms acting on a field L, with K = LG ⊆ L. Then

1. For every α ∈ L we have [K(α) : K] ≤ |G|.
2. L/K is separable.

3. L/K is finite with [L : K] ≤ |G|.

Proof

1, 2. Suppose α ∈ L. We claim that its minimal polynomial f over K is separable of degree at
most |G|.
For consider the set {σ(α) | σ ∈ G} and suppose its distinct elements are α = α1, α2, . . . ,
αr. Let g =

∏
(X − αi). Then g is invariant under G, since its linear factors are just

permuted by elements of G, and so g ∈ K[X].

Since g(α) = 0 we have f | g and then f is clearly separable, with deg f ≤ deg g ≤ |G|.
3. By (1), we can find α ∈ L such that [K(α) : K] is maximal. We shall show that L = K(α),

from which it follows that [L : K] ≤ |G|, as claimed.

Let β ∈ L. It is required to prove that β ∈ K(α). By (1), β is algebraic over K and satisfies
a polynomial of degree at most |G| over K. Hence, by the Tower Law, [K(α, β) : K] is
finite. However, (2) implies that K(α, β)/K is separable.

Now apply the Primitive Element Theorem and we get that there exists γ ∈ L such that
K(α, β) = K(γ). Now [K(γ) : K] = [K(γ) : K(α)][K(α) : K]. Hence [K(γ) : K(α)] = 1,
since [K(α) : K] is maximal, and so β ∈ K(α).
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Theorem 4.5

Let K ⊆ L be a finite field extension. Then the following are equivalent:

1. L/K is Galois,

2. K is the fixed field of Aut(L/K),

3. |Aut(L/K)| = [L : K],

4. L/K is normal and separable.

Proof

3 ⇔ 4. This is just (4.3).

2 ⇒ 1. This is clear, since Aut(L/K) is finite by (4.3).

1 ⇒ 2, 3. Suppose now that K = LG for some finite group G. Then [L : K] ≤ |G|, by (4.4). But
G ≤ Aut(L/K) and so |G| ≤ |Aut(L/K)| ≤ [L : K] by (4.3). Thus |G| = [L : K] and
G = Aut(L/K). Hence K is the fixed field of Aut(L/K) and |Aut(L/K)| = [L : K],
as required.

3 ⇒ 1. Let G = Aut(L/K) be finite, and set F = LG. Clearly F ⊇ K. Then L/F is
Galois and so the previous argument shows that |G| = [L : F ]. But by assumption
|G| = [L : K], and hence the Tower Law implies that F = K.

Notation

If K ⊆ L is Galois, we usually write Gal(L/K) for Aut(L/K), the Galois group of the
extension.

4.4 The Galois correspondence

Let L/K be a finite extension of fields. The group G = Aut(L/K) has |G| ≤ [L : K] by (4.3).
Let F = LG ⊇ K. Then (4.5) implies that |G| = [L : F ].

1. If now H is a subgroup of G, then the fixed field M = LH is an intermediate field
F ⊆ M ⊆ L with L/M Galois, and then (4.5) implies that Aut(L/M) = H.

2. For any intermediate field F ⊆ M ⊆ L, let H = Aut(L/M), a subgroup of G.

Claim

L/M is a Galois extension and M = LH .

Proof

Since L/F is Galois, (4.5) implies that it is normal and separable. Since L/F is
normal, so too is L/M (as by (4.1), L is the splitting field of some polynomial f ∈
F [X], and so L is the splitting field of f over M). Since L/F is separable, so too is
L/M (by (2.2)). Therefore L/M is Galois and M = LH .
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Conclusion

The operations

H ≤ G 7−→ F ⊆ LH ⊆ L

Aut(L/M) ≤ G ←−[ F ⊆ M ⊆ L

are mutually inverse.

Theorem 4.6 (Fundamental Theorem of Galois Theory)

With the notation as above,

1. There exists an order-reversing bijection between subgroups H of G and the interme-
diate fields F ⊆ M ⊆ L, where H corresponds to its fixed field LH and M corresponds
to Aut(L/M).

2. A subgroup H of G is normal iff LH/F is normal iff LH/F is Galois.

3. If H ¢G, then the map σ ∈ G 7→ σ|LH determines a group homomorphism of G onto
Gal(LH/F ) with kernel H, and hence Gal(LH/F ) ∼= G/H.

Proof

1. Already done.

2. If M = LH , observe that the fixed field of a conjugate subgroup σHσ−1 (σ ∈ G) is just
σM . From the bijection proved in (1), we deduce that H ¢ G (i.e. σHσ−1 = H for all
σ ∈ G) iff σM = M for all σ ∈ G.

Now observe that L is normal over F — in particular L is a splitting field for some
polynomial f ∈ F [X] — and so L contains a normal closure N of M/F . Any σ ∈ G
determines an F -embedding M ↪→ N , and conversely any F -embedding M ↪→ N extends
by (1.7) to an F -automorphism σ of the splitting field L of f . Thus (4.2) says that M/F
is normal iff σM = M for all σ ∈ G.

Finally, M/F is always separable (L/F is Galois and so use (2.2)) and so M/F is normal
iff M/F is Galois.

3. Let M = LH and H ¢ G. Then we have σ(M) = M for all σ ∈ G and so σ|M is
an F -automorphism of M . So there exists a group homomorphism θ : G → Gal(M/F )
with ker θ = Gal(L/M). But Gal(L/M) = H by (4.5), and so θ(G) ∼= G/H. Thus
|θ(G)| = |G : H| = |G|/|H| = [L : F ]/[L : M ] = [M : F ].

But |Gal(M/F )| = [M : F ] by (4.5), since M/F is Galois, and so θ is surjective and
induces an isomorphism G/H ∼= Gal(M/F ).

4.5 Galois groups of polynomials

Definition

Let f ∈ K[X] be a separable polynomial and let L/K be a splitting field for f . We define
the Galois group of f to be Gal(f) = Gal(L/K).
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Suppose now f has distinct roots in L, say α1, . . . , αd, and so L = K(α1, . . . , αd). Since a
K-automorphism of L is determined by its action on the roots αi, we have an injective homo-
morphism θ : G ↪→ Sd. Properties of f will be reflected in the properties of G.

Lemma 4.7

With the assumptions as above, f ∈ K[X] is irreducible iff G acts transitively on the roots
of f , that is, if θ(G) is a transitive subgroup of Sd.

Proof

(⇐) If f is reducible, say f = gh with g, h ∈ K[X] and deg g, h > 0, let α1 be a root of g, say.
Then for any σ ∈ G, σ(α1) is also a root of g. Hence G only permutes roots within the
irreducible factors and so its action is not transitive.

(⇒) If f is irreducible, then for any i, j there exists a K-automorphism K(αi) → K(αj). This
isomorphism extends by (1.7) to give a K-automorphism σ of L (which is the splitting field
of f) with the property that σ(αi) = αj . Therefore G is transitive on the roots of f .

So for low degree, the Galois groups of polynomials are very restrictive:

• deg f = 2: if f is reducible then G = 1; otherwise G = C2.

• deg f = 3: if f is reducible then G = 1 or C2; otherwise G = S3 or C3.

Definition

Let f ∈ K[X] be a polynomial with distinct roots α1, . . . , αd in a splitting field L; for ex-
ample, f may be irreducible and separable. Set ∆ =

∏
i<j(αi−αj). Then the discriminant

D of f is
D = ∆2 = (−1)d(d−1)/2

∏

i 6=j

(αi − αj).

D is fixed by all the elements of G = Gal(L/K) and hence is an element of K.

Remark

Suppose charK 6= 2, and f ∈ K[X] is irreducible and separable of degree d. Then ∆ 6= 0,
and θ(G) ⊆ Ad iff ∆ is fixed under G (since for any odd permutation σ, σ(∆) = −∆) iff
D is a square in K.

Examples

1. Let charK 6= 2 and let f = X2 + bX + c ∈ K[X]. Then α1 + α2 = −b and α1α2 = c, and
so D = (α1−α2)2 = b2− 4c. So the quadratic splits iff b2− 4c is a square (which we knew
already).

2. Let charK 6= 2, 3 and let f = X3 + bX2 + cX + d ∈ K[X] be irreducible and separable.
Let G be the Galois group of f . Then G = A3(= C3) iff D(f) is a square, and G = S3

otherwise.

To calculate D(f), set g = f(X − b/3) — this is of the form X3 + pX + q. Since α is a
root of f iff α + b/3 is a root of g, we deduce that ∆(f) = ∆(g) and so D(f) = D(g).
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Lemma 4.8

Let f ∈ K[X] be an irreducible, separable polynomial, and let M/K be a splitting field for
f . Let α ∈ M be a root of f and let L = K(α) ⊆ M . Then

D(f) = (−1)d(d−1)/2NK/k(f
′(α)).

Proof

Let σ1, . . . , σd be the distinct K-embeddings of L into M . Then
∏

i6=j

(αi − αj) =
∏

i

∏

j 6=i

(αi − αj)

=
∏

i

f ′(αi) (since f =
∏

(X − αj))

=
∏

i

σi(f ′(α))

= NL/K(f ′(α))

(see Examples Sheet 1, Question 14).

Example

For the cubic g = X3+pX +q, as in the example above, set y = g′(α). Then y = 3α2+p =
−2p− 3qα−1 and so α = −3q(y + 2p)−1. Therefore the minimal polynomial of y is

(y + 2p)3 − 3p(y + 2p)2 − 27q2,

whose constant term is

−4p3 − 27q2 = −NL/K(y) = D(g).

Remark

When K = Q, we can consider the spliting field of f an a subfield of C. This may be
useful.

For example, if f ∈ Q[X] is irreducible of degree d with precisely two complex roots,
the Galois group contains a transposition (complex conjugation is an element of Gal(f)
switching the two complex roots).

Elementary group theory shows that if G ⊆ Sp (p prime) is transitive and contains a
transposition, then it contains all transpositions and hence G = Sp.

So if f is irreducible of degree p with exactly two complex roots, then Gal(f) = Sp.

The following proposition (whose proof is left as an exercise) may be helpful when calculating
the Galois group of a polynomial.

Proposition 4.9

The transitive subgroups of S4 are S4, A4, D8, C4, and V4. The transitive subgroups of S5

are S5, A5, G20, D10 and C5, where G20 is generated by a 5-cycle and a 4-cycle.
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5 Galois Theory of Finite Fields

5.1 Finite fields

Recall

If F is a field with |F | = q, then q = pr for some r, where p = charF .

Definition

Given such a finite field, there exists an Fp-automorphism φ : F → F given by φ(x) = xp

for all x ∈ F , called the Fröbenius automorphism.

Remarks

1. φ is an homomorphism since 1p = p, (xy)p = xpyp and (x+y)p = xp +yp. It has kernel {0}
and so is injective, but then since F is finite it is surjective, and hence an automorphism.
Also, for x ∈ Fp we have xp ≡ x (mod p), and so φ is a Fp-automorphism.

2. Since |F ∗| = q−1 we have aq−1 = 1 and hence aq = a for all a ∈ F . That is, every element
of F is a root of the polynomial Xq −X. But since Xq −X is of degree q it has at most q
roots, and so these are all the roots. Therefore F is the splitting field of Xq −X over Fp,
and as such is unique.

3. If q = pr, then there does exist a field of order q. For let F be the splitting field of Xq−X
over Fp. Clearly F is finite, so let φ : F → F be the Fröbenius automorphism. Let F ′ ⊆ F
be the fixed field of 〈φr〉. But x ∈ F ′ iff φr(x) = x iff x is a root of Xq−X. So F ′ contains
all the roots of Xq−X and so Xq−X splits in F ′, and therefore F = F ′. Thus F consists
entirely of roots of Xq −X. These roots are distinct (since the derivative of Xq −X is −1
and so it has no roots), and so |F | = q as desired.

Notation

We denote the unique field of order q = pr by Fq or GF(q).

5.2 Galois groups of finite extensions of finite fields

Remarks

The subfields of Fpr are just Fps for s | r, where for each such s there is a unique subfield
of order ps, being the fixed field of 〈φs〉.
Now φr = id, but φi 6= id for any i < r, since Xpi−X has only pi roots. Hence φ generates
a cyclic group G = 〈φ〉 of order r of automorphisms of Fpr .

Since the subgroups of G = 〈φ〉 are just those of the form 〈φs〉 for s | r, we have the
following:

1. Any finite extension of finite fields is of the form L/K = Fpr/Fps , where s | r.
2. L/K is Galois with Gal(L/K) cyclic of order [L : K] = r/s, generated by φs.
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3. For each t with s | t and t | r there exists an intermediate field M = Fpt and a normal
subgroup H = 〈φt〉 such that M = LH and H = Gal(L/M). Further, these are the
only intermediate fields of L/K and subgroups of G.

Thus we have verified the Fundamental Theorem of Galois Theory for finite fields.

Remarks

1. Let K is a finite field, with f ∈ K[X] an irreducible polynimial of degree d. Then any
finite extension L/K is normal, and so if L contains one root of f then it contains all the
roots of f . Therefore, the splitting field L of f is of the form K(α), where f is the minimal
polynomial for α.

Moreover, Gal(f) = Gal(K(α)/K) is cyclic of degree d, and the generator of Gal(f) acts
cyclically on the d roots of f .

2. If K = Fps , then L = Fpsd is unique, so it doesn’t depend on the irreducible polynomial
of degree d. That is, if we’ve split one irreducible polynomial of degree d then we’ve split
them all.

Consider the general situation of K a field,

f = Xn + cn−1X
n−1 + · · ·+ c1X + c0 ∈ K[X]

a polynomial with distinct roots α1, . . . , αn in a splitting field L, and G = Gal(f) = Gal(L/K)
regarded as a subset of Sn. Let Y1, . . . , Yn be independent indeterminates, and for σ ∈ Sn, let

Hσ =
(
X − (ασ(1)Y1 + · · ·+ ασ(n)Yn)

) ∈ L[Y1, . . . , Yn][X].

We can define an action of σ on H = X − (α1Y1 + · · ·+ αnYn) by σH = Hσ−1 . Set

F =
∏

σ∈Sn

σH

=
∏

σ∈Sn

(
X − (α1Yσ(1) + · · ·+ αnYσ(n))

)

=
n!∑

j=0


 ∑

i1+···+in=n!−j

ai1,...,inY i1
1 · · ·Y in

n


Xj .

Since Sn preserves F , it preserves the coefficients ai1,...,in . The coefficients are in fact certain
symmetric polynomials in the αi (which could be given explicitly, independent of f) and hence
are polynomials in the coefficients c0, . . . , cn−1 (which could again can be given explicitly, inde-
pendent of f) (c.f. the Symmetric Function Theorem). Hence F ∈ K[Y1, . . . , Yn][X].

Now factor F = F1 · · ·FN into irreducibles in K[Y1, . . . , Yn][X], with each Fi irreducible in
K(Y1, . . . , Yn)[X], by Gauss’s Lemma.

Remark

In the case K = Q and ci ∈ Z, all the polynomials in the c0, . . . , cn−1 have coefficients
in Z, and so F ∈ Z[Y1, . . . , Yn][X] and we can take the factorization F = F1 · · ·FN with
Fi ∈ Z[Y1, . . . , Yn][X] (by Gauss’s Lemma).
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Now choose one of the factors H = Hσ of F1. By reordering the Fi (or the roots α1, . . . , αn) we
may assume without loss of generality that H = (X − (α1Y1 + · · ·+ αnYn)).

Recall that the images σH are all distinct. Now consider
∏

g∈G gH, with g−1 acting on the
coefficients of H. This has degree |G| and is in K[Y1, . . . , Yn][X], since it is invariant under the
action of G.

Since H divides F1 in L[Y1, . . . , Yn][X], gH divides F1 in L[Y1, . . . , Yn][X] and so
∏

gH divides
F1 in K[Y1, . . . , Yn][X]. But F1 is irreducible in K[Y1, . . . , Yn][X], and hence

∏
gH = F1.

So deg F1 = |G| and there are N = n!/|G| irreducible factors Fi, permuted transitively by the
action of Sn. Therefore, the orbit-stabilizer theorem implies that

n!
| Stab(F1)| =

n!
|G| ,

so |G| = |Stab(F1)|. Since G fixes F1, G ≤ Stab(F1) and hence G = Stab(F1), i.e. Gal(f) is
isomorphic to the subgroup of Sn (acting on Y1, . . . , Yn) which fixes F1.

Theorem 5.1

Suppose f ∈ Z[X] is a monic polynomial of degree n with distinct roots in a splitting field.
Suppose p is a prime such that the reduction f̄ of f modulo p also has distinct roots in a
splitting field. If f̄ = g1 · · · gr is the the factorization of f̄ in Fp[X], say deg gi = ni, then
Gal(f) ≤ Sn has an element of cyclic type (n1, . . . , nr).

Proof

This will follow if we can show Gal(f̄) ≤ Gal(f) ≤ Sn, since the action of Fröbenius φ on
the roots of f̄ clearly has the cyclic type claimed.

We now run the above programme twice: first over K = Q, identifying Gal(f) as the
subgroup of Sn fixing F1 ∈ Z[Y1, . . . , Yn][X], and then with f̄ over K = Fp. The resulting
polynomial we obtain,

F̃ ∈ Fp[Y1, . . . , Yn][X],

is just the reduction mod p of F , i.e. F̃ = F̄ . But F̄ = F̄1 · · · F̄N in Fp[Y1, . . . , Yn][X], and
we can factor F̄1 = h1 · · ·hm, with hi irreducible.

With appropriate choice of the order of the roots β1, . . . , βn of f̄ in a splitting field, we
may identify Gal(f̄) as the subgroup of Sn (acting on Y1, . . . , Yn) fixing h1, say. Since,
however, the linear factors of F̄ are distinct, the subgroup of Sn fixing F̄1 is the same
as the subgroup fixing F1, and Stab(h1) is a subgroup of Stab(F̄1) = Stab(F1). Thus
Gal(f̄) ≤ Gal(f) ≤ Sn as claimed.
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6 Cyclotomic Extensions

Suppose charK = 0 or p, where p - m. The mth cyclotomic extension of K is just the splitting
field L over K of Xm − 1.

Since mXm−1 and Xm − 1 have no common roots, the roots of Xm − 1 are distinct, the mth
roots of unity. They form a finite subgroup µm of K∗, and hence by (2.6) a cyclic group 〈ξ〉.
Thus L = K(ξ) is simple.

An element ξ′ ∈ µm is called a primitive mth root of unity if µm = 〈ξ′〉. Choosing a primitive
mth root of unity determines an isomorphism of cyclic groups

µm −→ Z/mZ
ξi 7−→ i.

Recall that ξi is a generator of µm iff (m, i) = 1, and so the primitive roots correspond to
elements of U(m) = (Z/mZ)∗, the multiplicative group of units in the ring Z/mZ.

Since Xm − 1 is separable, L/K is Galois with Galois group G. An element σ ∈ G sends the
primitive mth root of untiy ξ to another primitive mth root ξi, with (i,m) = 1 (and knowing i
determines σ).

Having chosen a primitive mth root of unity, we can define an injective map

θ : G −→ U(m)
σ 7−→ i,

where σ(ξ) = ξi. If, however, θ(σ) = i and θ(τ) = j, then (στ)(ξ) = σ(ξi) = ξij , and so
θ(στ) = θ(σ)θ(τ). Hence θ is a homomorphism. Via this homomorphism, the Galois group
may be considered as a subgroup of U(m). θ is an isomorphism iff G acts transitively on the
primitive mth roots of unity.

Definition

The mth cyclotomic polynomial is

Φm =
∏

i∈U(m)

(X − ξi).

Remark

Observe that
Xm − 1 =

∏

i∈Z/mZ
(X − ξi) =

∏

d|m
Φd.

For example, when K = Q, Φ1 = X − 1, Φ2 = X + 1, Φ4 = X2 + 1, and

X8 − 1 = (X4 − 1)(X4 + 1)

= (X2 − 1)(X2 + 1)(X4 + 1)

= (X − 1)(X + 1)(X2 + 1)(X4 + 1)

= Φ1Φ2Φ4(X4 + 1),

and so Φ8 = X4 + 1.
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Lemma 6.1

Φm is defined over the prime subfield of K (that is, over Q or Fp). When char k = 0, Φm

is defined over Z.

Proof

The proof is by induction on m. The result is trivial if m = 1. If m > 1 then

Xm − 1 = Φm

∏

d|m
d 6=m

Φd = Φmg,

where g is monic and by the induction hypothesis is defined over the prime subfield of K
(and over Z if char k = 0). By Gauss’ Lemma, or by direct argument using the Remainder
Theorem, Φm is also defined over the prime subfield (and over Z if char k = 0).

Proposition 6.2

The homomorphism θ (defined above) is an isomorphism iff Φm is irreducible in K[X].

Proof

Clear, since Φm is irreducible iff (by (4.7)) G acts transitively on the roots of Φm.

Proposition 6.3

If L is the mth cyclotomic extension of K = Fq, where q = pr, and p - m, then the Galois
group G is isomorphic to the cyclic subgroup of U(m) generated by q.

Proof

G is generated by the Fröbenius automorphism x 7→ xq, and so

G ∼= θ(G) = 〈q〉 ≤ U(m).

Thus if U(m) is not cyclic and K is any finite field, then θ is not an isomorphism, and so Φm is
reducible over K.

Now consider the case K = Q (and so Φm ∈ Z[X]). If we can show that Φm is irreducible over
Z, then Φm must be irreducible over Q (by Gauss’s Lemma) and so G ∼= U(m).

Proposition 6.4

For all m > 0, Φm is irreducible in Z[X].

Proof

Suppose not, and write Φm = fg, where f, g ∈ Z[X] and f an irreducible monic polynomial
with 1 ≤ deg f < φ(m) = deg Φm. Let K/Q be the mth cyclotomic extension, and let ε
be a root of f in K.
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Claim

If p - m is prime, then εp is also a root of f .

Proof

Suppose not. Then εp is a primitive mth root of unity and hence εp is a root of g.
Define h ∈ Z[X] by h(X) = g(Xp). Then h(ε) = 0. But then since f is the minimal
polynomial for ε over Q, f | h in Q[X] and Gauss’ Lemma implies that we can write
h = fl with l ∈ Z[X] (since f is monic).
Now reduce modulo p to get h̄ = f̄ l̄ in Fp[X]. Now h̄(X) = ḡ(Xp) = (ḡ(X))p. If q̄ is
any irreducible factor of f̄ in Fp[X] then q̄ | ḡp and so q̄ | ḡ. But then q̄2 | f̄ ḡ = Φ̄m

and so there exists a repeated root of Φ̄m and thus a repeated root for Xm − 1 —
but this is a contradiction since (p,m) = 1.

In general, consider now roots ξ of f and γ of g. Then γ = ξr for some r with (r,m) = 1.
Write r = p1 · · · pk as a product of (not necessarily distinct) primes, with pi - m for each i.

Repeated use of our claim implies that γ is a root of f and so Φm has a repeated root —
a contradiction. Hence Φm is irreducible over Q.

Remark

When m = p is prime, there is a simpler proof of (6.4). For Φp is irreducible iff g(X) =
Φp(X + 1) is irreducible. But

g(X) =
(X + 1)p − 1
(X + 1)− 1

= Xp−1 + pXp−2 +
(

p

2

)
Xp−3 + · · ·+ p,

and so the result follows by Eisenstein’s Criterion.
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7 Kummer Theory and Solving by Radicals

7.1 Introduction

When is a Galois extension L/K a splitting field for a polynomial of the form Xn − θ?

Theorem 7.1

Suppose Xn−θ ∈ K[X] and charK - n. Then the splitting field L contains a primitive nth
root of unity ω and the Galois group of L/K(ω) is cyclic of order dividing n. Moreover,
Xn − θ is irreducible over K(ω) iff [L : K(ω)] = n.

Proof

Since Xn− θ and nXn−1 are coprime, Xn− θ has distinct roots α1, . . . , αn in its splitting
field L. Moreover, L/K is Galois.

Since (αiα
−1
j )n = θθ−1 = 1, the elements 1 = α1α

−1
1 , α2α

−1
1 , . . . , αnα−1

1 are n distinct nth
roots of unity in L and so Xn − θ = (X − β)(X − ωβ) · · · (X − ωn−1β) in L[X]. Hence
L = K(ω, β)

If σ ∈ Gal(L/K(ω)), it is determined by its action on β. σ(β) is another root of Xn − θ,
say σ(β) = ωj(σ)β, for some 0 ≤ j(σ) < n. If σ, τ ∈ Gal(L/K(ω)),

τσ(β) = τ(ωj(σ)β) = ωj(σ)τ(β) = ωj(σ)+j(τ)β.

Therefore the map σ 7→ j(σ) induces a homomorphism Gal(L/K(ω)) → Z/nZ. As j(σ) =
β iff σ is the identity, the homomorphism is injective. So Gal(L/K(ω)) is isomorphic to a
subgroup of Z/nZ and hence is cyclic of order dividing n.

Finally, observe that [L : K(ω)] ≤ n, with equality iff Xn − θ is irreducible over K(ω),
since L = K(ω)(β).

Example

X6+3 is irreducible overQ (by Eisenstein) but not overQ(ω) (where ω = 1
2(1+

√−3)) since
the splitting field L = Q((−3)1/6, ω) = Q((−3)1/6) has degree 3 over Q(ω) = Q(

√−3). In
fact, X6 + 3 = (X3 +

√−3)(X3 −√−3) over Q(ω).

We now consider the converse problem to (7.1); we shall need a result proved on Example Sheet
1, Question 13.

Proposition 7.2

Suppose that K and L are fields and σ1, . . . , σn are distinct embeddings of K into L. Then
there do not exist λ1, . . . , λn ∈ L (not all zero) such that λ1σ1(x) + · · ·+ λnσn(x) = 0 for
all x ∈ K.

Proof

If such a relation did exist, choose one with the least number r > 0 of non-zero λi. Hence
wlog λ1, . . . , λr are all non-zero and λ1σ1(x) + · · ·+ λrσr(x) = 0 for all x ∈ K. Clearly we
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have r > 1, since if λ1σ1(x) = 0 for all x then λ1 = 0. We now produce a relation with
fewer than r terms, and hence a contradiction.

Choose y ∈ K, such that σ1(y) 6= σr(y). The above relation implies that λ1σ1(yx) + · · ·+
λrσr(yx) = 0 for all x ∈ K. Thus λ1σ1(y)σ1(x) + · · ·+ λrσr(y)σr(x) = 0, so multiply the
original relation by σr(y) and subtract, to get

λ1σ1(x)(σ1(y)− σr(y)) + · · ·+ λr−1σr−1(x)(σr−1(y)− σr(y)) = 0

for all x ∈ K, which gives the required contradiction.

Definition

An extension L/K is called cyclic if it is Galois and Gal(L/K) is cyclic.

Theorem 7.3

Suppose L/K is a cyclic extension of degree n, where charK - n, and that K contains a
primitive nth root of unity ω, Then there exists θ ∈ K such that Xn− θ is irreducible over
K and L/K is a splitting field for Xn− θ. If β′ is a root of Xn− θ in a splitting field then
L = K(β′).

Definition

Such an extension is called a radical extension.

Proof

Let σ be a generator of the cyclic group Gal(L/K). Since 1, σ, σ2, . . . , σn−1 are distinct
automorphisms of L, (7.2) implies that there exists α ∈ L such that

β = α + ωσ(α) + · · ·+ ωn−1σn−1(α) 6= 0.

Observe that σ(β) = ω−1β; thus β /∈ K and σ(βn) = σ(β)n = βn. So let θ = βn ∈ K.

As Xn − θ = (X − β)(X − ωβ) · · · (X − ωn−1β) in L, K(β) is a splitting field for Xn − θ
over K. Since 1, σ, . . . , σn−1 are distinct K-automorphisms of K(β), (4.3) implies that
[K(β) : K] ≥ n, and hence L = K(β). Thus L = K(β′) for any root β′ of Xn − θ, since
β′ = ωiβ for some 0 ≤ i ≤ n− 1.

The irreducibility of Xn − θ over K follows since it is the minimal polynomial for β, and
[L : K] = n.

Definition

A field extension L/K is an extension by radicals if there exists a tower

K = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L

such that each extension Li+1/Li is a radical extension. A polynomial f ∈ K[X] is said
to be soluble by radicals if its splitting field lies in an extension of K by radicals.
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7.2 Cubics

Let charK 6= 2, 3 and let f ∈ K[X] be an irreducible cubic. Let L be the splitting field for f
over K. Let ω be a primitive cube root of unity, and let D = ∆2 be the discriminant.

Set M = L(ω) — then M is Galois over K(ω). We have a diagram with degrees as shown:

M = L(ω)
3

ÄÄ
ÄÄ

ÄÄ
Ä

1 or 2

??
??

??
?

K(∆, ω)

1 or 2 ??
??

??
?

L

3ÄÄ
ÄÄ

ÄÄ
Ä

K(∆)

1 or 2

K

Hence Gal(M/K(∆, ω)) = C3. Therefore, (7.3) implies that M = K(∆, ω)(β), where β is a root
of an irreducible polynomial X3 − θ over K(∆, ω).

In fact, the proof of (7.3) implies that β = α1 + ωα2 + ω2α3, where α1, α2, α3 are the roots of
f . Since all the extensions K ⊆ K(∆) ⊆ K(∆, ω) ⊆ M are radical, any cubic can by solved by
radicals.

Explicitly, reduce down to the case of cubics g(X) = X3 + pX + q. Then D = −4p3− 27q2. Set

β = α1 + ωα2 + ω2α3,

γ = α1 + ω2α2 + ωα3.

Then

βγ = α2
1 + α2

2 + α2
3 + (ω + ω2)(α1α2 + α1α3 + α2α3)

= (α1 + α2 + α3)2 − 3(α1α2 + α2α3 + α3α1)
= −3p

and so β3γ3 = −27p3, and

β3 + γ3 = (α1 + ωα2 + ω2α3)3 + (α1 + ω2α2 + ωα3)3 + (α1 + α2 + α3)3

= 3(α3
1 + α3

2 + α3
3) + 18α1α2α3

= −27q,

since α3
i = −pαi − q and so (α3

1 + α3
2 + α3

3) = −3q. So β3 and γ3 are roots of the quadratic
X2 + 27qX − 27p3, and so are

−27
2

q ± 3
√−3
2

(−27q2 − 4p3)1/2 = −27
2

q ± 3
√−3
2

√
D.

We can solve for β3 and γ3 in K(
√−3D) ⊆ K(ω,

√
D). We obtain β by adjoining a cube root

of β3, and then γ = −3p/β.

Finally, we solve in M for α1, α2, α3 — namely

α1 =
1
3
(β + γ), α2 =

1
3
(ω2β + ωγ), α3 =

1
3
(ωβ + ω2γ).
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7.3 Quartics

Recall there exists an action of S4 on the set {{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}}
of unordered pairs of unordered pairs. So we have a surjective homomorphism S4 → S3 with
kernel V4 = {id, (12)(34), (13)(24), (14)(23)}, and hence an isomorphism S4/V ∼= S3.

Suppose now that f is an irreducible separable quartic over K. Then the Galois group G is a
transitive subgroup of S4, with normal subgroup G∩ V such that G/(G∩ V ) is isomorphic to a
subgroup of S3.

Let M be the splitting field of f over K and let L = MG∩V . Since V ⊂ A4, L ⊇ MG∩A4 = K(∆),
as observed before. Moreover, Gal(L/K(∆)) is isomorphic to a subgroup of A4/V ∼= C3, namely
G ∩A4/G ∩ V (FTGT).

Hence we have the tower of extensions:

M

L

1 or 3

K(∆)

1 or 2

K

We claim that f can be solved by radicals.

For if we adjoin a primitive cube root of unity ω, then either f is reducible over K(ω), in which
case we know already we can solve by radicals, or f is irreducible over K(ω). So, wlog, we may
assume that K contains cube roots of unity.

Then K(∆)/K is a radical extension. (7.3) implies that L/K(∆) is a radical extension. So L/K
is the composite of at most two radical extensions, and hence the claim follows.

We now see explicitly how this works. Assume that charK 6= 2, 3. Wlog, we reduce to polyno-
mials of the form

f = X4 + pX2 + qX + r.

Let α1, α2, α3, α4 denote the roots of f in M (so α1 + α2 + α3 + α4 = 0). Thus M =
K(α1, α2, α3, α4). Set

β = α1 + α2, γ = α1 + α3, δ = α1 + α4.

Then

β2 = (α1 + α2)2 = −(α1 + α2)(α3 + α4)

γ2 = (α1 + α3)2 = −(α1 + α3)(α2 + α4)

δ2 = (α1 + α4)2 = −(α1 + α4)(α2 + α3).

Note that these are distinct — for example if β2 = γ2 then β = ±γ and so either α2 = α3 or
α1 = α4.
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Now β2, γ2, δ2 are permuted by G. They are invariant only under the elements of G ∩ V , so
Gal(M/K(β2, γ2, δ2)) = G ∩ V . Therefore L = MG∩V = K(β2, γ2, δ2).

Consider now the polynomial g = (X − β2)(X − γ2)(X − δ2). Since the elements of G can only
permute these three factors, g must have coefficients fixed by G, and so g ∈ K[X]. g is called
the resolvant cubic.

Explicit checks yield

β2 + γ2 + δ2 = −2p (inspection)

β2γ2 + β2δ2 + γ2δ2 = p2 − 4v (multiply out)
βγδ = −q. (inspection)

Thus the resolvant cubic is
X3 + 2pX2 + (p2 − 4r)X − q2.

L is the splitting field for g over K. So if we solve g for β2, γ2, δ2 by radicals, we can then solve
for β, γ, δ by taking square roots (taking care to choose signs so that βγδ = −q). Then we solve
for the roots

α1 =
1
2
(β + γ + δ), α2 =

1
2
(β − γ − δ), α3 =

1
2
(−β + γ − δ), α4 =

1
2
(−β − γ + δ).

7.4 Insolubility of the general quintic by radicals

Definition

A group G is soluble if there exists a finite series of subgroups

1 = Gn ⊂ Gn−1 ⊂ · · · ⊂ G0 = G

such that Gi ¢ Gi−1 with Gi−1/Gi cyclic, for each 1 ≤ i ≤ n.

Examples

1. S4 is soluble. For if G1 = A4, G2 = V and G3 = 〈(12)〉 = C2, then

1 = G4 ≤ G3 ≤ G2 ≤ G1 ≤ G0 = S4,

and G0/G1
∼= C2, G1/G2

∼= C3 and G2/G3
∼= G3/G4

∼= C2.

2. Using the structure theorem for abelian groups, it is easily seen that any finitely generated
abelian group is soluble.

Theorem 7.4

1. If G is a soluble group and A is a subgroup of G, then A is soluble.

2. If G is a group and H ¢ G, then G is soluble iff both H and G/H are soluble.
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Proof

1. We have a series of subgroups

1 = Gn ¢ Gn−1 ¢ · · ·¢ G0 = G

such that Gi−1/Gi is cyclic for 1 ≤ i ≤ n. Let Ai = A ∩ Gi and θ : Ai−1 → Gi−1/Gi be
the composite homomorphism Ai−1 ↪→ Gi−1 ↪→ Gi−1/Gi. Then

ker θ = {a ∈ Ai−1 | aGi = Gi}
= Ai−1 ∩Gi

= A ∩Gi−1 ∩Gi

= A ∩Gi

= Ai.

So for each i, Ai ¢ Ai−1 and Ai−1/Ai is isomorphic to a subgroup of Gi−1/Gi and hence
cyclic. Therefore A is soluble.

2. A similar but longer argument — see a book.

Example

For n ≥ 5, a standard result says that An is simple (i.e. there does not exist a proper
normal subgroup) and hence non-soluble. Hence (7.4) implies that Sn is also non-soluble.

We now relate solubility of the Galois group to solubility of polynomial equations f = 0 by
radicals. Assume for simplicity that charK = 0. An argument similar to that used for the
quartic in §7.3 shows that if f has a soluble Galois group, then f is soluble by radicals. (The
basic idea is that if M/K is a splitting field for f , with d = [M : K], we first adjoin a primitive
dth root of unity and then repeatedly use (7.3).)

We’re mainly interested in the converse. Suppose then L = L0 ⊂ L1 ⊂ · · · ⊂ Lr = N is an
extension by radicals. Even if L contains all the requisite roots of unity and Li/Li−1 is Galois
and cyclic, it doesn’t follow that N/L is Galois.

Proposition 7.5

Suppose that L/K is a Galois extension and that M = L(β), with β a root of Xn − θ for
some θ ∈ L. Then there exists an extension by radicals N/M such that N/K is Galois.

Proof

If necessary we adjoin a primitive nth root of unity ε to M , so Xn−θ factorizes over M(ε)
as (X − β)(X − εβ) · · · (X − εn−1β). M(ε) is a splitting field for Xn − θ over L, and so
M(ε)/L is Galois. Let G = Gal(L/K) and define

f =
∏

σ∈G

(Xn − σ(θ)).

The coefficients of f are invariant under the action of G and so f ∈ K[X].

Since L/K is Galois, it is the splitting field for some polynomial g ∈ K[X]. let N be
the splitting field for fg — so N/K is normal. Moreover, N is obtained from M by first
adjoining ε and then adjoining a root of each polynomial Xn − σ(θ) for σ ∈ G. So N/M
is an extension by radicals.
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Corollary 7.6

Suppose M/K is an extension by radicals. Then there exists an extension by radicals N/M
such that N/K is Galois.

Proof

We have K = K0 ⊂ K1 ⊂ · · · ⊂ Kr = M , with Ki = Ki−1(βi) for some βi ∈ Ki satisfying
Xni − θi = 0 for some θi ∈ Ki−1, ni ∈ N.

We now argue by induction on r. Suppose the Corollary to be true for r − 1, so that
there exists an extension by radicals N ′/Kr−1 such that N ′/K is Galois. Let fr be the
minimal polynomial for βr over Kr−1 and let gr be an irreducible factor of fr considered
as a polynomial in N ′[X]. Let N ′(γ)/N ′ be the extension of N ′ obtained by adjoining
a root γ of gr. We consider Kr−1 ⊆ N ′ ⊆ N(γ), so that γ has minimal polynomial
fr over Kr−1 (since fr(γ) = 0 and by assumption fr is irreducible). We may identify
Kr = Kr−1(βr) ∼= Kr−1(γ). Therefore N ′(γ) is an extension by radicals of Kr = Kr−1(γ).

By assumption N ′/K is Galois and contains a root of Xnr − θr, where θr ∈ Kr−1 ⊆ N ′.
So (7.5) implies that there exists an extension by radicals N/N ′(γ) — and so N is an
extension by radicals of Kr = M — such that N/K is Galois.

Theorem 7.7

Suppose that f ∈ K[X] and that there exists an extension by radicals

K = K0 ⊂ K1 ⊂ · · · ⊂ Kr = M,

where Ki = Ki−1(βi) and βi is a root of Xni − θi, over which f splits completely. Then
Gal(f) is soluble.

Proof

By (7.6) we may assume that M/K is Galois. Let n = lcm(n1, . . . , nr), and let ε be a
primitive nth root of unity.

If Gal(M/K) is soluble, then the splitting field of f is an intermediate field K ⊆ K ′ ⊆ M
and Gal(f) = Gal(K ′/K) is a quotient of Gal(M/K) and hence soluble by (7.4).

So it remains to show that Gal(M/K) is soluble. Assume first that ε ∈ K, and let Gi =
Gal(M/Ki). Therefore 1 = Gr ≤ Gr−1 ≤ · · · ≤ G1 ≤ G0 = Gal(M/K). Moreover, each
extension Ki = Ki−1(β)/Ki−1 is a Galois extension (since ε ∈ K) with cyclic Galois group
(by (7.1)). So apply the fundamental theorem of Galois theory to the Galois extension
M/Ki−1 and we get that Gi ¢ Gi−1 with Gi−1/Gi cyclic. Therefore G0 = Gal(M/K) is
soluble.

If, however, ε /∈ K, set L = K(ε). Clearly M(ε)/K is Galois. Set G′ = Gal(M(ε)/L)
— this is soluble by the previous argument (as ε ∈ L). If G = Gal(M(ε)/K), then
G/G′ = Gal(K(ε)/K) is the Galois group of a cyclotomic extension, hence abelian, and
hence soluble. So (7.4) implies that G is soluble and hence Gal(M/K) is also soluble.

Remark

There exist many irreducible quintics f ∈ Q[X] with Galois group S5 (or A5). Therefore
(7.7) implies that we cannot in general solve quintics by radicals.
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