Galois Theory

Dr P.M.H. Wilson ${ }^{1}$

Michaelmas Term 2000

These notes are based on a course of lectures given by Dr Wilson during Michaelmas Term 2000 for Part IIB of the Cambridge University Mathematics Tripos.

In general the notes follow Dr Wilson's lectures very closely, although there are certain changes. In particular, the organisation of Chapter 1 is somewhat different to how this part of the course was lectured, and I have also consistently avoided the use of a lower-case k to refer to a field in these notes fields are always denoted by upper-case roman letters.

These notes have not been checked by Dr Wilson and should not be regarded as official notes for the course. In particular, the responsibility for any errors is mine - please email me at james@lingard.com with any comments or corrections.

James Lingard

October 2001

Contents

1 Revision from Groups, Rings and Fields 2
1.1 Field extensions 2
1.2 Classification of simple algebraic extensions 3
1.3 Tests for irreducibility 3
1.4 The degree of an extension 4
1.5 Splitting fields 5
2 Separability 7
2.1 Separable polynomials and formal differentiation 7
2.2 Separable extensions 8
2.3 The Primitive Element Theorem 10
2.4 Trace and norm 11
3 Algebraic Closures 12
3.1 Definitions 12
3.2 Existence and uniqueness of algebraic closures 12
4 Normal Extensions and Galois Extensions 16
4.1 Normal extensions 16
4.2 Normal closures 17
4.3 Fixed fields and Galois extensions 19
4.4 The Galois correspondence 20
4.5 Galois groups of polynomials 21
5 Galois Theory of Finite Fields 24
5.1 Finite fields 24
5.2 Galois groups of finite extensions of finite fields 24
6 Cyclotomic Extensions 27
7 Kummer Theory and Solving by Radicals 30
7.1 Introduction 30
7.2 Cubics 32
7.3 Quartics 33
7.4 Insolubility of the general quintic by radicals 34

1 Revision from Groups, Rings and Fields

1.1 Field extensions

Suppose K and L are fields. Recall that a non-zero ring homomorphism $\theta: K \rightarrow L$ is necessarily injective (since $\operatorname{ker} \theta \triangleleft K$ and so $\operatorname{ker} \theta=\{0\}$) and satisfies $\theta(a / b)=\theta(a) / \theta(b)$. Therefore θ is a homomorphism of fields.

Definition

A field extension of K is given by a field L and a non-zero homomorphism $\theta: K \hookrightarrow L$. Such a θ will also be called an embedding of K into L.

Remark

In fact, we often identify K with its image $\theta(K) \subseteq L$, since $\theta: K \rightarrow \theta(K)$ is an isomorphism, and denote the extension by L / K or $K \hookrightarrow L$.

Lemma 1.1

If $\left\{K_{i}\right\}_{i \in I}$ is any collection of subfields of a field L, then $\bigcap_{i \in I} K_{i}$ is also a subfield of L.
Proof
Easy exercise from the axioms.

Definition

Given a field extension L / K and an arbitrary subset $S \subseteq L$, the subfield of L generated by K and S is

$$
K(S)=\bigcap\{\text { subfields } M \subseteq L \mid M \supseteq K, M \supseteq S\}
$$

The lemma above implies that it is a subfield - it is the smallest subfield containing K and S.

Notation

If $S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ we write $K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for $K(S)$.

Definition

A field extension L / K is finitely generated if for some n there exist $\alpha_{1}, \ldots, \alpha_{n} \in L$ such that $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. If $L=K(\alpha)$ for some $\alpha \in L$, the extension is simple.

Definition

Given a field extension L / K, an element $\alpha \in L$ is algebraic over K if there exists a non-zero polynomial $f \in K[X]$ such that $f(\alpha)=0$ in L. Otherwise, α is transcendental over K.
If α is algebraic, the monic polynomial

$$
f=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}
$$

of smallest degree such that $f(\alpha)=0$ is called the minimal polynomial of f. Clearly such an f is unique and irreducible.

Definition

A field extension L / K is algebraic if every $\alpha \in L$ is algebraic over K. It is pure transcendental if every $\alpha \in L \backslash K$ is transcendental over K.

1.2 Classification of simple algebraic extensions

Given a field K and an irreducible polynomial $f \in K[X]$, recall that the quotient ring $K[X] /(f)$ is a field. Therefore we have a simple algebraic field extension $K \hookrightarrow K(\alpha)=K[X] /(f), \alpha$ denoting the image of X under the quotient map.

Also, for any simple algebraic field extension $K \hookrightarrow K(\alpha)$ let f be the minimal polynomial of α over K. We then have a commutative diagram

inducing an isomorphism of fields $K[X] /(f) \cong K(\alpha)$. Thus up to field isomorphisms, any simple algebraic extension of K is of the form $K \hookrightarrow K[X] /(f)$ for some irreducible $f \in K[X]$.

Therefore, classifying simple algebraic extensions of K (up to isomorphism) is equivalent to classifying irreducible monic polynomials in $K[X]$.

1.3 Tests for irreducibility

Let R be a UFD and K its field of fractions, e.g. $R=\mathbb{Z}, K=\mathbb{Q}$.

Lemma 1.2 (Gauss' Lemma)

A polynomial $f \in R[X]$ is irreducible in $R[X]$ iff it is irreducible in $K[X]$.

Theorem 1.3 (Eisenstein's Criterion)

Suppose

$$
f=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0} \in R[X]
$$

and there exists an irreducible $p \in R$ such that $p \nmid a_{n}, p \mid a_{i}$ for $i=n-1, \ldots, 0$ and $p^{2} \nmid a_{0}$. Then f is irreducible in $R[X]$ and hence irreducible in $K[X]$.

Proofs
See 'Groups, Rings and Fields'.

1.4 The degree of an extension

Definition

If L / K is a field extension, then L has the structure of a vector space over K. The dimension of the vector space is called the degree of the extension, written $[L: K]$.
We say that L is finite over K if $[L: K]$ is finite.

Theorem 1.4

Given a field extension L / K and an element $\alpha \in L, \alpha$ is algebraic over K iff $K(\alpha) / K$ is finite. When α is algebraic, $[K(\alpha): K]$ is the degree of the minimal polynomial of α.

Proof

(\Leftarrow) If $[K(\alpha): K]=n$, then $1, \alpha, \ldots, \alpha^{n}$ are linearly dependent over K, so there exists a polynomial $f \in K[X]$ with $f(\alpha)=0$, as claimed.
(\Rightarrow) If α is algebraic over K with minimal polynomial f, then

$$
\begin{equation*}
f(\alpha)=\alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0}=0 \tag{*}
\end{equation*}
$$

in L.
Suppose $g \in K[X]$ with $g(\alpha) \neq 0$. Since f is irreducible we have $\operatorname{hcf}(f, g)=1$. Euclid's algorithm implies that there exist $x, y \in K[X]$ such that $x f+y g=1$ and so $y(\alpha) g(\alpha)=1$ in L (since $f(\alpha)=0$). So $g(\alpha)^{-1} \in\left\langle 1, \alpha, \alpha^{2}, \ldots\right\rangle$, the subspace of L generated by powers of α.
Now $K(\alpha)$ consists of all elements of the form $h(\alpha) / g(\alpha)$ for $h, g \in K[X]$ polynomials, $g(\alpha) \neq 0$, and so $K(\alpha)$ is spanned as a K-vector space by $1, \alpha, \alpha^{2}, \ldots$ and hence from relation (*) by $1, \alpha, \ldots, \alpha^{n-1}$.
Minimality of n implies that the spanning set $1, \alpha, \ldots, \alpha^{n-1}$ is a basis and hence $[K(\alpha): K]=n$.

Proposition 1.5 (Tower Law)

Given a tower of field extensions $K \hookrightarrow L \hookrightarrow M$,

$$
[M: K]=[M: L][L: K] .
$$

Proof
Let $\left(u_{i}\right)_{i \in I}$, be a basis for M over L and let $\left(v_{j}\right)_{j \in J}$, be a basis for be a basis for L over K. We shall show that $\left(u_{i} v_{j}\right)_{i \in I, j \in J}$ is a basis for M over K, from which the result follows.
First we show that the $u_{i} v_{j}$ span M over K. Now any vector $x \in M$ may be written as a linear combination of the u_{i}, that is

$$
x=\sum_{i \in I} \mu_{i} u_{i}
$$

for some $\mu_{i} \in L$. But since the v_{j} span L over K we can write each μ_{i} as a linear combination of the v_{j}, that is

$$
\mu_{i}=\sum_{j \in J} \lambda_{i j} v_{j}
$$

for some $\lambda_{i j} \in K$. But then

$$
x=\sum_{\substack{i \in I \\ j \in J}} \lambda_{i j} u_{i} v_{j}
$$

as required.
Now we shall show that the $u_{i} v_{j}$ are linearly independent over K. Suppose that we have

$$
\sum_{\substack{i \in I \\ j \in J}} \lambda_{i j} u_{i} v_{j}=0
$$

for some $\lambda_{i j} \in L$. But then

$$
\sum_{i \in I}\left(\sum_{j \in J} \lambda_{i j} v_{j}\right) u_{i}=0
$$

and then since the u_{i} are linearly independent over L we must have

$$
\sum_{j \in J} \lambda_{i j} v_{j}=0
$$

for each $j \in J$. But then since the v_{j} are linearly independent over K we must have that $\lambda_{i j}=0$ for each $i \in I, j \in J$, as required.

Corollary 1.6

If L / K is finitely generated, $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, with each α_{i} algebraic over K, then L / K is a finite extension.

Proof
Each α_{i} is algebraic over $K\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$ and so by (1.4) we have that for each i, $\left[K\left(\alpha_{1}, \ldots, \alpha_{i}\right): K\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\right]$ is finite. Induction and the Tower Law give the required result.

1.5 Splitting fields

Recall that if L / K is a field extension and $f \in K[X]$ we say that f splits (completely) over L if it may be written as a product of linear factors

$$
f=k\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{n}\right)
$$

where $k \in K$ and $\alpha_{i} \in L . L$ is called a splitting field for f if f fails to split over any proper subfield of L, that is, if $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Remark

Splitting fields always exist.
For if g is any irreducible factor of f, then $K[X] /(g)=K(\alpha)$ is an extension of K for which $g(\alpha)=0$, where α denotes the image of X. The remainder theorem implies that g (and hence f) splits off a linear factor. Induction implies that there exists a splitting field L for f, with $[L: K] \leq n!(n=\operatorname{deg} f)$ by (1.5).

Splitting fields are unique up to isomorphisms over K.

Proposition 1.7

Suppose $\theta: K \rightarrow K^{\prime}$ is an isomorphism of fields, with the polynomial $f \in K[X]$ corresponding to $g=\theta(f) \in K^{\prime}[X]$. Then any splitting field L of f over K is isomorphic over θ to any splitting field L^{\prime} of g over K^{\prime}, and we have the commutative diagram

Proof
Since f splits in L, so does any irreducible factor f_{1}. Let $g_{1}=\theta\left(f_{1}\right)$ be the corresponding irreducible factor of g. Observe that g, and hence g_{1}, splits in L^{\prime}. Choose a root $\alpha \in L$ of f_{1} and a root $\beta \in L^{\prime}$ of g_{1}.
Then there exists an isomorphism of fields, θ_{1}, determined by the commutative diagram

with $\theta_{1}(\alpha)=\beta$. Hence we have the diagram

Now set $f=(X-\alpha) h \in K(\alpha)[X]$ and $g=(X-\beta) l \in K^{\prime}(\beta)[X]$. Then

1. $l=\theta_{1}(h)$ under the induced isomorphism $K(\alpha)[X] \rightarrow K^{\prime}(\beta)[X]$.
2. L is a splitting field for h over $K(\alpha)$ and L^{\prime} is a splitting field for l over $K^{\prime}(\beta)$.

Therefore the required result follows by induction on the degree of the polynomial.

Remark

Thus we have proved existence and uniqueness of splitting fields for any finite set of polynomials - just take the splitting field of the product.
With appropriate use of Zorn's Lemma (see $\S 3$) we can prove existence and uniqueness of splitting fields for any set of polynomials.

2 Separability

2.1 Separable polynomials and formal differentiation

Definition

An irreducible polynomial $f \in K[X]$ is separable over K if it has distinct zeros in a splitting field L, that is

$$
f=k\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{n}\right)
$$

in $L[X]$, with $k \in K$ and $\alpha_{i} \in L$ all distinct. By uniqueness (up to isomorphism) of splitting fields, this is independent of any choices.
An arbitrary polynomial $f \in K[X]$ is separable over K if all its irreducible factors are. If f is not separable, it is called inseparable.

Definition

Formal differentiation is a linear map $D: K[X] \rightarrow K[X]$ of vector spaces over K, defined by

$$
D\left(X^{n}\right)=n X^{n-1}
$$

for all $n \geq 0$.

Claim

If $f, g \in K[X]$, then

$$
D(f g)=f D(g)+g D(f) .
$$

Proof
Using linearity we can reduce the theorem to the case when f and g are monomials, when it is a trivial check.

Notation

From now on, we write f^{\prime} for $D(f)$.

Lemma 2.1

A non-zero polynomial $f \in K[X]$ has a repeated zero in a splitting field L iff f and f^{\prime} have a common factor in $K[X]$ of degree ≥ 1.

Proof

(\Rightarrow) Suppose f has a repeated zero in a splitting field L, that is $f=(X-\alpha)^{2} g$ in $L[X]$. Then $f^{\prime}=(X-\alpha)^{2} g^{\prime}-2(X-\alpha) g$. So f and f^{\prime} have a common factor $(X-\alpha)$ in $L[X]$, and so f and f^{\prime} have a common factor in $K[X]$, namely the minimal polynomial for α over K.
(\Leftarrow) Suppose f has no repeated zeros in a splitting field L. We shall show that f and f^{\prime} are coprime in $L[X]$ and hence also in $K[X]$.
Since f splits in L it is sufficient to prove that $(X-\alpha) \mid f$ in $L[X]$ implies $(X-\alpha) \nmid f^{\prime}$. Writing $f=(X-\alpha) g$, we observe that $(X-\alpha) \nmid g$, but $f^{\prime}=(X-\alpha) g^{\prime}+g$ and so $(X-\alpha) \nmid f^{\prime}$.

Suppose now that $f \in K[X]$ is irreducible. Then (2.1) says that f has repeated zeros iff $f^{\prime}=0$. But if

$$
f=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}
$$

then

$$
f^{\prime}=n a_{n} X^{n-1}+(n-1) a_{n-1} X^{n-2}+\cdots+a_{1}
$$

and therefore $f^{\prime}=0$ iff $i a_{i}=0$ for all $i>0$. So if $\operatorname{deg} f=n>0$ then $f^{\prime}=0$ iff char $K=p>0$ and $p \mid i$ whenever $a_{i} \neq 0$.

So if char $K=0$, all polynomials are separable. If char $K=p>0$, an irreducible polynomial $f \in K[X]$ is inseparable iff $f \in K\left[X^{p}\right]$.

2.2 Separable extensions

Definition

Given a field extension L / K and an element $\alpha \in L, \alpha$ is separable over K if its minimal polynomial $f_{\alpha} \in K[X]$ is separable.

The extension is called separable if α is separable for all $\alpha \in L$. Otherwise the extension is called inseparable.

Example

Let $L=\mathbb{F}_{p}(t)$, the field of rational functions over the finite field \mathbb{F}_{p} with p elements. Let $K=\mathbb{F}_{p}\left(t^{p}\right)$.
Then the extension L / K is finite but inseparable, since the minimal polynomial of t over K is $X^{p}-t^{p}$, which splits as $(X-t)^{p}$ over $L[X]$.

Lemma 2.2

If $K \hookrightarrow L \hookrightarrow M$ is a tower of field extensions with M / K separable, then both M / L and L / K are separable.

Proof
Obviously L / K is separable, since any element $\alpha \in L$ is separable over K as an element of M.

Now given $\alpha \in M$, the minimal polynomial of α over L divides the minimal polynomial of α over K, and so has distinct zeros in any splitting field.

Proposition 2.3

Let $K(\alpha) / K$ be a finite simple extension, with $f \in K[X]$ the minimal polynomial for α. Given a field extension $\theta: K \hookrightarrow L$, the number of embeddings $\tilde{\theta}: K(\alpha) \hookrightarrow L$ extending θ is precisely the number of distinct roots of $\theta(f)$ in L.
In particular, there exist at most $n=[K(\alpha): K]$ such embeddings, with equality iff $\theta(f)$ splits completely over L and f is separable.

Proof
An embedding $K(\alpha) \hookrightarrow L$ extending θ must send α to a zero of $\theta(f)$, and it is determined by this information.
Furthermore, if β is a root of $\theta(f)$ in L then the ring homomorphism $K[X] \rightarrow L$ sending g to $\theta(g)(\beta)$ factors to give an embedding $K(\alpha) \cong K[X] /(f) \hookrightarrow L$ extending θ.
Therefore the embeddings $K(\alpha) \hookrightarrow L$ extending θ are in one-to-one correspondence with the roots of $\theta(f)$ in L. So there exist at most $n=\operatorname{deg}(f)=[K(\alpha): K]$ (by (1.4)) such embeddings, with equality iff $\theta(f)$ has n distinct roots in L iff $\theta(f)$ splits completely over L and f is separable.

Theorem 2.4

Suppose $L=K\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ is a finite extension of K, and M / K is any field extension for which the minimal polynomials of the α_{i} all split. Then

1. The number of embeddings $L \hookrightarrow M$ extending $K \hookrightarrow M$ is at most $[L: K]$. If each α_{i} is separable over $K\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$ then we have equality.
2. If the number of embeddings $L \hookrightarrow M$ extending $K \hookrightarrow M$ is $[L: K]$ then L / K is separable.

Hence if each α_{i} is separable over $K\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$ then L / K is separable. (By (2.2) this happens, for example, when each α_{i} is separable over K.)

Proof

1. This follows by induction on r :
(2.3) implies that the claim holds for $r=1$.

Suppose that it is true for $r-1(r>1)$. Then there exist at most $\left[K\left(\alpha_{1}, \ldots, \alpha_{r-1}\right): K\right]$ embeddings $K\left(\alpha_{1}, \ldots, \alpha_{r-1}\right) \hookrightarrow M$ extending $K \hookrightarrow M$, with equality if each $\alpha_{i}(i<r)$ is separable over $K\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$.
Now for each embedding $K\left(\alpha_{1}, \ldots, \alpha_{r-1}\right) \hookrightarrow M$, (2.3) implies that there exist at most $\left[K\left(\alpha, \ldots, \alpha_{r}\right): K\left(\alpha_{1}, \ldots, \alpha_{r-1}\right)\right]$ embeddings $K\left(\alpha_{1}, \ldots, \alpha_{r}\right) \hookrightarrow M$ extending the given one, with equality if α_{r} separable over $K\left(\alpha_{1}, \ldots, \alpha_{r-1}\right)$.
The Tower Law then gives the result.
2. Suppose $\alpha \in L$. Then (2.3) implies that there exist at most $[K(\alpha): K]$ embeddings $K(\alpha) \hookrightarrow M$ extending $K \hookrightarrow M$ and (1) implies that for each such embedding, there exist at most $[L: K(\alpha)]$ embeddings $L \hookrightarrow M$ extending it. By the Tower Law, our assumption implies that both these must be equalities. In particular, (2.3) implies that α must be separable.

Corollary 2.5

If $K \hookrightarrow L \hookrightarrow M$ is a tower of finite extensions with M / L and L / K separable, then so too is M / K.

Proof

Let $\alpha \in M$ with (separable) minimal polynomial $f \in L[X]$ over L. Write

$$
f=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0},
$$

where each a_{i} is separable over K.
The minimal polynomial of α over $K\left(a_{0}, \ldots, a_{n-1}\right)$ is still f, and so α is separable over $K\left(a_{0}, \ldots, a_{n-1}\right)$. But then (2.4) implies that $K\left(a_{0}, \ldots, a_{n-1}, \alpha\right) / K$ is separable, and so α is separable over K.

2.3 The Primitive Element Theorem

Lemma 2.6

If K is a field and G is a finite subgroup of K^{*}, the group of units of K, then G is cyclic. Proof

See 'Groups, Rings and Fields'.

Theorem 2.7 (Primitive Element Theorem)

1. If $L=K(\alpha, \beta)$ is a finite extension of K with β separable over K, then there exists $\theta \in L$ such that $L=K(\theta)$.
2. Any finite separable extension is simple.

Proof
$1 . \Rightarrow 2$. If L / K is a finite separable extension, then $L=K\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ with each α_{i} separable over K, so (2) follows from (1) by induction.

1. If K is finite then so too is L, and so (2.6) implies that L^{*} is cyclic, say $L^{*}=\langle\theta\rangle$. Then $L=K(\theta)$, as required.
So assume that K is infinite, and let f and g be the minimal polynomials for α and β respectively.
Let M be a splitting field extension for $f g$ over L. Identifying L with its image in M, the distinct zeros of f are $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$, where $r \leq \operatorname{deg} f$. Since β is separable over K, g splits into distinct linear factors over M and has zeros $\beta=\beta_{1}, \beta_{2}, \ldots, \beta_{s}$, where $s=\operatorname{deg} g$.
Then choose $c \in K$ such that the elements $\alpha_{i}+c \beta_{j}$ are distinct (this is possible since there are only finitely many values $\alpha_{i}-\alpha_{i^{\prime}}, \beta_{j}-\beta_{j^{\prime}}$) and set $\theta=\alpha+c \beta$.
Let $F \in K(\theta)[X]$ be given by $F(X)=f(\theta-c X)$. We have $g(\beta)=0$ and $F(\beta)=f(\alpha)=0$. So F and g have a common zero, namely β. Any other common zero would be a β_{j} with $j>1$, but then $F\left(\beta_{j}\right)=f\left(\alpha+c\left(\beta-\beta_{j}\right)\right)$. Since by assumption $\alpha+c\left(\beta-\beta_{j}\right)$ is never an α_{i}, this cannot be zero.
The linear factors of g being distinct, we deduce that $(X-\beta)$ is the h.c.f. of F and g in $M[X]$. However, the minimal polynomial h of β over $K(\theta)$ then divides both F and g in $K(\theta)[X]$ and hence also in $M[X]$. This implies that $h=X-\beta$ and so $\beta \in K(\theta)$.
Therefore $\alpha=\theta-c \beta \in K(\theta)$ and so $K(\alpha, \beta)=K(\theta)$, as required.

2.4 Trace and norm

Definition

Let L / K be a finite field extension and let $\alpha \in L$. Multiplication by α defines a linear map $\theta_{\alpha}: L \rightarrow L$ of vector spaces over K. The trace and norm of $\alpha, \operatorname{Tr}_{L / K}(\alpha)$ and $\mathrm{N}_{L / K}(\alpha)$, are defined to be the trace and determinant of θ_{α}, i.e. of any matrix representing θ_{α} with respect to some basis for L / K.

Proposition 2.8

Suppose $r=[L: K(\alpha)]$ and

$$
f=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}
$$

is the minimal polynomial of α over K. If we define $b_{i}=(-1)^{(n-i)} a_{i}$, then

$$
\operatorname{Tr}_{L / K}(\alpha)=r b_{n-1} \quad \text { and } \quad \mathrm{N}_{L / K}(\alpha)=b_{0}{ }^{r} .
$$

Proof
This follows from the claim that the characteristic polynomial of θ_{α} is f^{r}.
We prove this first for the case $r=1$, i.e. $L=K(\alpha)$. Take a basis $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$ $(n=[K(\alpha): K])$ for L / K. With respect to this basis, θ_{α} has the matrix

$$
M=\left(\begin{array}{ccccc}
& & & & -a_{0} \\
1 & & & & -a_{1} \\
& 1 & & & -a_{2} \\
& & \ddots & & \vdots \\
& & & 1 & -a_{n-1}
\end{array}\right) .
$$

The characteristic polynomial of θ_{α} is then

$$
\operatorname{det}\left(\begin{array}{ccccc}
X & & & & a_{0} \\
-1 & X & & & a_{1} \\
& -1 & X & & a_{2} \\
& & \ddots & \ddots & \vdots \\
& & & -1 & X+a_{n-1}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccccc}
& & & & f \\
-1 & X & & & a_{1} \\
& -1 & X & & a_{2} \\
& & \ddots & \ddots & \vdots \\
& & & -1 & X+a_{n-1}
\end{array}\right)
$$

which equals f, as claimed.
In the general case, choose a basis $1=\beta_{1}, \beta_{2}, \ldots, \beta_{r}$ for L over $K(\alpha)$ and take a basis for L / K given by

$$
\begin{array}{lllll}
1, & \alpha, & \alpha^{2}, & \ldots, & \alpha^{n-1} \\
\beta_{2}, & \alpha \beta_{2}, & \alpha^{2} \beta_{2}, & \ldots, & \alpha^{n-1} \beta_{2} \\
& & \vdots & & \\
\beta_{r}, & \alpha \beta_{r}, & \alpha^{2} \beta_{r}, & \ldots, & \alpha^{n-1} \beta_{r}
\end{array}
$$

(c.f. proof of the Tower Law). With respect to this basis, θ_{α} has the matrix
with characteristic polynomial f^{r}, which proves the claim and hence the proposition.

3 Algebraic Closures

3.1 Definitions

Definition

A field K is algebraically closed if any $f \in K[X]$ splits into linear factors over K.
This is equivalent to saying, "there do not exist non-trivial algebraic extensions of K ", i.e. any algebraic extension $K \hookrightarrow L$ is an isomorphism.
An extension L / K is called an algebraic closure of K if L / K is algebraic and L is algebraically closed.

Lemma 3.1

If L / K is algebraic and every polynomial in $K[X]$ splits completely over L, then L is an algebraic closure of K.

Proof
It is required to prove that L is algebraically closed. Suppose $L(\alpha) / L$ is a finite extension and let

$$
f=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}
$$

be the minimal polynomial of α over L. Let $K^{\prime}=K\left(a_{0}, \ldots, a_{n-1}\right)$. Then the extension $K^{\prime}(\alpha) / K^{\prime}$ is finite, and since each $a_{i} \in L$ is algebraic over K the Tower Law implies that K^{\prime} / K and hence $K^{\prime}(\alpha) / K$ is finite. But then α is algebraic over K and so $\alpha \in L$ (since the minimal polynomial of α over K splits completely over L).

Example

Let A be the set of algebraic numbers in \mathbb{C}, i.e.

$$
A=\{\alpha \in \mathbb{C} \mid \alpha \text { algebraic over } \mathbb{Q}\} .
$$

Then A is a subfield of \mathbb{C}. For if $\alpha, \beta \in A$, the Tower Law and (1.4) imply that $\mathbb{Q}(\alpha, \beta) / \mathbb{Q}$ is a finite extension. Therefore for any combination $\gamma=\alpha+\beta, \alpha-\beta, \alpha \beta, \alpha / \beta$ (when $\beta \neq 0$) we have $[\mathbb{Q}(\gamma) / \mathbb{Q}]$ finite, and so γ is algebraic over \mathbb{Q} and hence $\gamma \in A$.
Therefore $A=\overline{\mathbb{Q}}$, the algebraic closure of the rationals.

3.2 Existence and uniqueness of algebraic closures

Theorem 3.2 (Existence of algebraic closures)

For any field K there exists an algebraic closure.

Proof

Let A be the set of all pairs $\alpha=(f, j)$, where f is an irreducible monic polynomial in $K[X]$ and $1 \leq j \leq \operatorname{deg} f$. For each $\alpha=(f, j)$ we introduce an indeterminate $X_{\alpha}=X_{f, j}$ and consider the polynomial ring $K\left[X_{\alpha} \mid \alpha \in A\right]$ in all these indeterminates.

Let $b_{f, l}$, for $0 \leq l<\operatorname{deg} f$, denote the coefficients of

$$
\tilde{f}=f-\prod_{j=1}^{\operatorname{deg} f}\left(X-X_{f, j}\right)
$$

in $K\left[X_{\alpha} \mid \alpha \in A\right]$. Let I be the ideal generated by all these elements $b_{f, l}$ over all f, l and set $R=K\left[X_{\alpha} \mid \alpha \in A\right] / I$.
The idea here is that we are forcing all the monic polynomials $f \in K[X]$ to split completely, with the indeterminates $X_{f, j}$ representing the roots of f.

Claim

$$
I \neq K\left[X_{\alpha} \mid \alpha \in A\right], \text { and so } R \neq 0 .
$$

Proof
If we did have equality, then there exists a finite sum

$$
\begin{equation*}
g_{1} b_{f_{1}, l_{1}}+\cdots+g_{N} b_{f_{N}, l_{N}}=1 \tag{*}
\end{equation*}
$$

in $K\left[X_{\alpha} \mid \alpha \in A\right]$. Let S be a splitting field extension for f_{1}, \ldots, f_{N}. For each i, f_{i} splits in S as

$$
f_{i}=\prod_{j=1}^{\operatorname{deg} f_{i}}\left(X-\alpha_{i j}\right)
$$

Let $\theta: K\left[X_{\alpha} \mid \alpha \in A\right] \rightarrow S$ be the evaluation map (a ring homomorphism) sending $X_{f_{i}, j}$ to $\alpha_{i j}$ for each i, j and all other indeterminates X_{α} to 0 . Let $\tilde{\theta}$ be the homomorphism induced from $K\left[X_{\alpha} \mid \alpha \in A\right][X]$ to $S[X]$ by θ. Then

$$
\tilde{\theta}\left(\tilde{f}_{i}\right)=\tilde{\theta}\left(f_{i}\right)-\prod_{j=1}^{\operatorname{deg} f} \tilde{\theta}\left(X-X_{f_{i}, j}\right)=f_{i}-\prod_{j=1}^{\operatorname{deg} f_{i}}\left(X-\alpha_{i j}\right)=0 .
$$

But then $\theta\left(b_{f_{i}, j}\right)=0$ for each i, j, since the $b_{f_{i}, j}$ are the coefficients of \tilde{f}. Then, taking the image of the relation $(*)$ under θ, we get $0=1$.

Thus $R \neq 0$, and we may use Zorn's Lemma to choose a maximal ideal m of R (see handout). Let $L=R / m$. This gives a field extension $K \hookrightarrow L$ as the composite of the ring homomorphisms

$$
K \hookrightarrow K\left[X_{\alpha} \mid \alpha \in A\right] \rightarrow R \rightarrow L .
$$

Claim

L is an algebraic closure of K with this inclusion map.

Proof

First observe that L / K is algebraic, since it is generated by the images $x_{f, j}$ of the $X_{f, j}$, which by construction satisfy $f\left(x_{f, j}\right)=0$. Any element of L involves only finitely many of the $x_{f, j}$, and so by the Tower Law is algebraic over K.
Moreover, by assumption any $f \in K[X]$ splits completely over L, and so the result follows from (3.1).

Proposition 3.3

Suppose $i: K \hookrightarrow L$ is an embedding of K into an algebraicallly closed field L. For any algebraic field extension $\phi: K \hookrightarrow M$, there exists an embedding $j: M \hookrightarrow L$ extending i, i.e. such that the following diagram

commutes.
Proof
Let S denote all pairs (A, θ), where A is a subfield of M containing $\phi(K)$ and θ is an embedding of A into L such that $\theta \circ \phi=i$. Clearly $S \neq \emptyset$, since $A=\phi(K)$ is a component of an element of S.

We shall use the partial order on S given by $\left(A_{1}, \theta_{1}\right) \leq\left(A_{2}, \theta_{2}\right)$ if A_{1} is a subfield of A_{2} and $\left.\theta_{2}\right|_{A_{1}}=\theta_{1}$.
If \mathcal{C} is a chain in S, let $B=\bigcup\{A \mid(A, \theta) \in \mathcal{C}\}$. Then B is a subfield of M. Moreover, we can define a function ψ from B to L as follows. If $\alpha \in B$, then $\alpha \in A$ for some $(A, \theta) \in \mathcal{C}$, and so we let $\psi(\alpha)=\theta(\alpha)$. This is clearly well-defined, and gives an embedding of B into L. Thus (B, ψ) is an upper bound for \mathcal{C}.
Therefore Zorn's Lemma implies that S has a maximal element (A, θ).
It is now required to prove that $A=M$. Given an element $\alpha \in M, \alpha$ is algebraic over A so let f be its minimal polynomial over A. Then $\theta(f)$ splits over L (since L is algebraically closed), say

$$
\theta(f)=\left(X-\beta_{1}\right) \cdots\left(X-\beta_{r}\right)
$$

Since $\theta(f)\left(\beta_{1}\right)=0$, there exists an embedding $A(\alpha) \cong A[X] /(f) \hookrightarrow L$ extending θ and sending α to β_{1} (c.f. proof of (2.3)). But then the maximality of (A, θ) implies that $\alpha \in A$ and hence $M=A$.

Corollary 3.4 (Uniqueness of algebraic closures)

If $i_{1}: K \hookrightarrow L_{1}, i_{2}: K \hookrightarrow L_{2}$ are two algebraic closures of K, then there exists an isomorphism $\theta: L_{1} \rightarrow L_{2}$ such that the following diagram

commutes.

Proof
By (3.3), there exists an embedding $\theta: L_{1} \hookrightarrow L_{2}$ such that $i_{2}=\theta \circ i_{1}$. Since L_{2} / K is algebraic, so too is L_{2} / L_{1}, but then since L_{1} is algebraically closed, $L_{2} \cong L_{1}$.

Remark

For general K the construction and uniqueness of the algebraic closure \bar{K} has involved Zorn's Lemma, so it is preferable to avoid the use of \bar{K} wherever possible (which for finite extensions we can).

Note, however, that we can construct \mathbb{C} by 'bare hands', without the use of the Axiom of Choice, so our objection is not valid for $K=\mathbb{Q}$, any number field, or \mathbb{R}.

4 Normal Extensions and Galois Extensions

4.1 Normal extensions

Definition

An extension L / K is normal if every irreducible polynomial $f \in K[X]$ having a root in L splits completely over L.

Example

$\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not normal since $X^{3}-2$ doesn't split completely over any real field.

Theorem 4.1

An extension L / K is normal and finite iff L is a splitting field for some polynomial $f \in K[X]$.

Proof

(\Rightarrow) Suppose L / K is normal and finite. Then $L=K\left(\alpha_{1}, \ldots, \alpha_{r}\right)$, with α_{i} having minimal polynomial $f_{i} \in K[X]$, say.
Let $f=f_{1} \cdots f_{r}$. We claim that L is the splitting field for f over K. For each f_{i} is irrreducible with a zero α_{i} in L and so each f_{i}, and hence f, splits completely over L, by the normality of L. Since L is generated by K and the zeros of f it is a splitting field for f over K.
(\Leftarrow) Suppose L is the splitting field of some $g \in K[X]$. The extension is obviously finite.
To prove normality, it is required to prove that given an irreducible polynomial $f \in K[X]$ with a zero in L, f splits completely over L.
Suppose M / L is a splitting field extension for a polynomial f (thought of as an element of $L[X])$ and that α_{1} and α_{2} are zeros of f in M. Then we claim that $\left[L\left(\alpha_{1}\right): L\right]=\left[L\left(\alpha_{2}\right): L\right]$. This yields the required result, since we may choose $\alpha_{1} \in L$ by assumption and so for any root α_{2} of f in M we have $\left[L\left(\alpha_{2}\right): L\right]=1$, i.e. $\alpha_{2} \in L$, and so f splits completely over L. To prove the claim, consider the following diagram of field extensions:

Observe the following:

1. Since f is irreducible, (1.4) implies that $K\left(\alpha_{1}\right) \cong K\left(\alpha_{2}\right)$ over K, and in particular $\left[K\left(\alpha_{1}\right): K\right]=\left[K\left(\alpha_{2}\right): K\right]$.
2. For $i=1,2, L\left(\alpha_{i}\right)$ is a splitting field for g over $K\left(\alpha_{i}\right)$, and so by (1.7)

In particular we deduce that $\left[L\left(\alpha_{1}\right): K\left(\alpha_{1}\right)\right]=\left[L\left(\alpha_{2}\right): K\left(\alpha_{2}\right)\right]$.
Now the Tower Law gives the result.

4.2 Normal closures

Definition

We know that any finite extension L / K is finitely generated, $L=K\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ say. Let $f_{i} \in K[X]$ be the minimal polynomial for α_{i}.
Now let M / L be the splitting field for $f=f_{1} \cdots f_{r}$. By (4.1) M / L is normal. We define M / K to be the normal closure of L / K.

Remark

Any normal extension N / L must split each of the f_{i}, and so for some $M^{\prime} \subseteq N, M^{\prime} / L$ is a splitting field for f and so is isomorphic over L to M / L (by (1.7)).
Thus the normal closure of L / K is characterized as the minimal extension M / L such that M / K is normal, and it is unique up to isomorphism over L.

Definition

Let L / K and L^{\prime} / K be field extensions. A K-embedding of L into L^{\prime} is an embedding which fixes K.
In the case where $L=L^{\prime}$ and L / K is finite, then the embedding is also surjective and so is an automorphism. In this case we call the K-embedding a K-automorphism. We denote the group of K-automorphisms of L / K by $\operatorname{Aut}(L / K)$.

Theorem 4.2

Let L / K be a finite extension, and let $\theta: L \hookrightarrow M$ with M / L normal. Let $L^{\prime}=\theta(L) \subseteq M$. Then

1. The number of distinct K-embeddings $L \hookrightarrow M$ is at most $[L: K]$, with equality iff L / K is separable.
2. L / K is normal iff every K-embedding $\phi: L \hookrightarrow M$ has image L^{\prime} iff every K-embedding $\phi: L \hookrightarrow M$ is of the form $\phi=\theta \circ \alpha$ for some $\alpha \in \operatorname{Aut}(L / K)$.

Proof

1. This follows directly from (2.4).
2. First observe that
(a) L / K is normal iff L^{\prime} / K is normal.
(b) Any K-embedding $\phi: L \hookrightarrow M$ gives rise to a K-embedding $\psi: L^{\prime} \hookrightarrow M$, where $\psi=\phi \circ \theta^{-1}$, and vice versa.
(c) Any K-embedding $\phi: L \hookrightarrow M$ with image L^{\prime} gives rise to an automorphism α of L / K such that $\phi=\theta \circ \alpha$. Conversely, any ϕ of this form is a K-embedding with image L^{\prime}.

Hence we are required to prove that L^{\prime} / K is normal iff any K-embedding $\psi: L^{\prime} \hookrightarrow M$ has image L^{\prime}.
(\Rightarrow) Suppose $\alpha \in L^{\prime}$ with minimal polynomial $f \in K[X]$. If L^{\prime} / K normal then f splits completely over L^{\prime}. Now if $\psi: L^{\prime} \hookrightarrow M$ is a K-embedding then $\psi(\alpha)$ is another root of f, and hence $\psi(\alpha) \in L^{\prime}$. Thus $\psi\left(L^{\prime}\right) \subseteq L^{\prime}$, but since L^{\prime} / K is finite, $\psi\left(L^{\prime}\right)=L^{\prime}$.
(\Leftarrow) Suppose $f \in K[X]$ is an irreducible polynomial with a zero $\alpha \in L^{\prime}$. By assumption, M contains a normal closure M^{\prime} of L / K and so f splits completely over M^{\prime}. Also, since L^{\prime} / K is finite, $L^{\prime} \subseteq M^{\prime}$.
Let $\beta \in M^{\prime}$ be any other root of f. Then there exists an isomorphism over K, $K(\alpha) \cong K[X] /(f) \cong K(\beta)$. Since M^{\prime} is a splitting field for some polynomial F over K, it is also a splitting field for F over $K(\alpha)$ or $K(\beta)$. So (1.7) implies that the isomorphism $K(\alpha) \cong K(\beta)$ extends to an isomorphism $K(\alpha) \subseteq M^{\prime} \rightarrow M^{\prime} \supseteq K(\beta)$ with $K(\alpha) \rightarrow K(\beta)$, which in turn restricts to a K-embedding $L^{\prime} \hookrightarrow M$, sending α to β. Therefore, $\beta \in L^{\prime}$.
Since this is true for all roots of β, f splits completely over L^{\prime}, that is, L^{\prime} / K is normal.

Corollary 4.3

If L / K is finite then $|\operatorname{Aut}(L / K)| \leq[L: K]$ with equality iff L / K is normal and separable.
Proof
Let M / L be a normal extension. Then by (4.2),

$$
\begin{aligned}
|\operatorname{Aut}(L / K)| & =\mid\{K \text {-embeddings } L \hookrightarrow M \text { of the form } \theta \circ \alpha, \alpha \in \operatorname{Aut}(L / K)\} \mid \\
& \leq \mid\{K \text {-embeddings } L \hookrightarrow M\} \mid \\
& \leq[L: K]
\end{aligned}
$$

with equality iff L / K is normal and separable.

4.3 Fixed fields and Galois extensions

From now on, we'll only deal with field extensions L / K where $K \subseteq L-$ we don't lose any generality from doing this as for any extension L / K we can always identify K with its image in L.

Definition

If L is a field and G is any finite group of automorphisms of L then we write $L^{G} \subseteq L$ for the fixed field

$$
L^{G}=\{x \in L \mid g(x)=x \text { for all } g \in G\} .
$$

It is easy to check that this is a subfield.

Definition

We say that a finite extension L / K is Galois if $K=L^{G}$ for some finite group of automorphisms G. If this is the case then it is clear that $G \leq \operatorname{Aut}(L / K)$. In fact we shall show that $G=\operatorname{Aut}(L / K)$.

Proposition 4.4

Let G be a finite group of automorphisms acting on a field L, with $K=L^{G} \subseteq L$. Then

1. For every $\alpha \in L$ we have $[K(\alpha): K] \leq|G|$.
2. L / K is separable.
3. L / K is finite with $[L: K] \leq|G|$.

Proof
1 , 2. Suppose $\alpha \in L$. We claim that its minimal polynomial f over K is separable of degree at most $|G|$.
For consider the set $\{\sigma(\alpha) \mid \sigma \in G\}$ and suppose its distinct elements are $\alpha=\alpha_{1}, \alpha_{2}, \ldots$, α_{r}. Let $g=\Pi\left(X-\alpha_{i}\right)$. Then g is invariant under G, since its linear factors are just permuted by elements of G, and so $g \in K[X]$.
Since $g(\alpha)=0$ we have $f \mid g$ and then f is clearly separable, with $\operatorname{deg} f \leq \operatorname{deg} g \leq|G|$.
3. By (1), we can find $\alpha \in L$ such that $[K(\alpha): K]$ is maximal. We shall show that $L=K(\alpha)$, from which it follows that $[L: K] \leq|G|$, as claimed.
Let $\beta \in L$. It is required to prove that $\beta \in K(\alpha)$. By (1), β is algebraic over K and satisfies a polynomial of degree at most $|G|$ over K. Hence, by the Tower Law, $[K(\alpha, \beta): K]$ is finite. However, (2) implies that $K(\alpha, \beta) / K$ is separable.
Now apply the Primitive Element Theorem and we get that there exists $\gamma \in L$ such that $K(\alpha, \beta)=K(\gamma)$. Now $[K(\gamma): K]=[K(\gamma): K(\alpha)][K(\alpha): K]$. Hence $[K(\gamma): K(\alpha)]=1$, since $[K(\alpha): K]$ is maximal, and so $\beta \in K(\alpha)$.

Theorem 4.5

Let $K \subseteq L$ be a finite field extension. Then the following are equivalent:

1. L / K is Galois,
2. K is the fixed field of $\operatorname{Aut}(L / K)$,
3. $|\operatorname{Aut}(L / K)|=[L: K]$,
4. L / K is normal and separable.

Proof

$3 \Leftrightarrow 4$. This is just (4.3).
$2 \Rightarrow 1$. This is clear, since $\operatorname{Aut}(L / K)$ is finite by (4.3).
$1 \Rightarrow 2,3$. Suppose now that $K=L^{G}$ for some finite group G. Then $[L: K] \leq|G|$, by (4.4). But $G \leq \operatorname{Aut}(L / K)$ and so $|G| \leq|\operatorname{Aut}(L / K)| \leq[L: K]$ by (4.3). Thus $|G|=[L: K]$ and $G=\operatorname{Aut}(L / K)$. Hence K is the fixed field of $\operatorname{Aut}(L / K)$ and $|\operatorname{Aut}(L / K)|=[L: K]$, as required.
$3 \Rightarrow 1$. Let $G=\operatorname{Aut}(L / K)$ be finite, and set $F=L^{G}$. Clearly $F \supseteq K$. Then L / F is Galois and so the previous argument shows that $|G|=[L: F]$. But by assumption $|G|=[L: K]$, and hence the Tower Law implies that $F=K$.

Notation

If $K \subseteq L$ is Galois, we usually write $\operatorname{Gal}(L / K)$ for $\operatorname{Aut}(L / K)$, the Galois group of the extension.

4.4 The Galois correspondence

Let L / K be a finite extension of fields. The group $G=\operatorname{Aut}(L / K)$ has $|G| \leq[L: K]$ by (4.3). Let $F=L^{G} \supseteq K$. Then (4.5) implies that $|G|=[L: F]$.

1. If now H is a subgroup of G, then the fixed field $M=L^{H}$ is an intermediate field $F \subseteq M \subseteq L$ with L / M Galois, and then (4.5) implies that $\operatorname{Aut}(L / M)=H$.
2. For any intermediate field $F \subseteq M \subseteq L$, let $H=$ Aut (L / M), a subgroup of G.

Claim

L / M is a Galois extension and $M=L^{H}$.
Proof
Since L / F is Galois, (4.5) implies that it is normal and separable. Since L / F is normal, so too is L / M (as by (4.1), L is the splitting field of some polynomial $f \in$ $F[X]$, and so L is the splitting field of f over M). Since L / F is separable, so too is L / M (by (2.2)). Therefore L / M is Galois and $M=L^{H}$.

Conclusion

The operations

$$
\begin{aligned}
H & \leq G \longmapsto F \subseteq L^{H} \subseteq L \\
\operatorname{Aut}(L / M) & \leq G \longleftrightarrow F \subseteq M \subseteq L
\end{aligned}
$$

are mutually inverse.

Theorem 4.6 (Fundamental Theorem of Galois Theory)

With the notation as above,

1. There exists an order-reversing bijection between subgroups H of G and the intermediate fields $F \subseteq M \subseteq L$, where H corresponds to its fixed field L^{H} and M corresponds to $\operatorname{Aut}(L / M)$.
2. A subgroup H of G is normal iff L^{H} / F is normal iff L^{H} / F is Galois.
3. If $H \triangleleft G$, then the map $\left.\sigma \in G \mapsto \sigma\right|_{L^{H}}$ determines a group homomorphism of G onto $\operatorname{Gal}\left(L^{H} / F\right)$ with kernel H, and hence $\operatorname{Gal}\left(L^{H} / F\right) \cong G / H$.

Proof

1. Already done.
2. If $M=L^{H}$, observe that the fixed field of a conjugate subgroup $\sigma H \sigma^{-1}(\sigma \in G)$ is just σM. From the bijection proved in (1), we deduce that $H \triangleleft G$ (i.e. $\sigma H \sigma^{-1}=H$ for all $\sigma \in G)$ iff $\sigma M=M$ for all $\sigma \in G$.

Now observe that L is normal over F - in particular L is a splitting field for some polynomial $f \in F[X]$ - and so L contains a normal closure N of M / F. Any $\sigma \in G$ determines an F-embedding $M \hookrightarrow N$, and conversely any F-embedding $M \hookrightarrow N$ extends by (1.7) to an F-automorphism σ of the splitting field L of f. Thus (4.2) says that M / F is normal iff $\sigma M=M$ for all $\sigma \in G$.
Finally, M / F is always separable (L / F is Galois and so use (2.2)) and so M / F is normal iff M / F is Galois.
3. Let $M=L^{H}$ and $H \triangleleft G$. Then we have $\sigma(M)=M$ for all $\sigma \in G$ and so $\left.\sigma\right|_{M}$ is an F-automorphism of M. So there exists a group homomorphism $\theta: G \rightarrow \operatorname{Gal}(M / F)$ with $\operatorname{ker} \theta=\operatorname{Gal}(L / M)$. But $\operatorname{Gal}(L / M)=H$ by (4.5), and so $\theta(G) \cong G / H$. Thus $|\theta(G)|=|G: H|=|G| /|H|=[L: F] /[L: M]=[M: F]$.
But $|\operatorname{Gal}(M / F)|=[M: F]$ by (4.5), since M / F is Galois, and so θ is surjective and induces an isomorphism $G / H \cong \operatorname{Gal}(M / F)$.

4.5 Galois groups of polynomials

Definition

Let $f \in K[X]$ be a separable polynomial and let L / K be a splitting field for f. We define the Galois group of f to be $\operatorname{Gal}(f)=\operatorname{Gal}(L / K)$.

Suppose now f has distinct roots in L, say $\alpha_{1}, \ldots, \alpha_{d}$, and so $L=K\left(\alpha_{1}, \ldots, \alpha_{d}\right)$. Since a K-automorphism of L is determined by its action on the roots α_{i}, we have an injective homomorphism $\theta: G \hookrightarrow S_{d}$. Properties of f will be reflected in the properties of G.

Lemma 4.7

With the assumptions as above, $f \in K[X]$ is irreducible iff G acts transitively on the roots of f, that is, if $\theta(G)$ is a transitive subgroup of S_{d}.

Proof

(\Leftarrow) If f is reducible, say $f=g h$ with $g, h \in K[X]$ and $\operatorname{deg} g, h>0$, let α_{1} be a root of g, say. Then for any $\sigma \in G, \sigma\left(\alpha_{1}\right)$ is also a root of g. Hence G only permutes roots within the irreducible factors and so its action is not transitive.
(\Rightarrow) If f is irreducible, then for any i, j there exists a K-automorphism $K\left(\alpha_{i}\right) \rightarrow K\left(\alpha_{j}\right)$. This isomorphism extends by (1.7) to give a K-automorphism σ of L (which is the splitting field of f) with the property that $\sigma\left(\alpha_{i}\right)=\alpha_{j}$. Therefore G is transitive on the roots of f.

So for low degree, the Galois groups of polynomials are very restrictive:

- $\operatorname{deg} f=2$: if f is reducible then $G=1$; otherwise $G=C_{2}$.
- $\operatorname{deg} f=3$: if f is reducible then $G=1$ or C_{2}; otherwise $G=S_{3}$ or C_{3}.

Definition

Let $f \in K[X]$ be a polynomial with distinct roots $\alpha_{1}, \ldots, \alpha_{d}$ in a splitting field L; for example, f may be irreducible and separable. Set $\Delta=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)$. Then the discriminant D of f is

$$
D=\Delta^{2}=(-1)^{d(d-1) / 2} \prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right) .
$$

D is fixed by all the elements of $G=\operatorname{Gal}(L / K)$ and hence is an element of K.

Remark

Suppose char $K \neq 2$, and $f \in K[X]$ is irreducible and separable of degree d. Then $\Delta \neq 0$, and $\theta(G) \subseteq A_{d}$ iff Δ is fixed under G (since for any odd permutation $\sigma, \sigma(\Delta)=-\Delta$) iff D is a square in K.

Examples

1. Let char $K \neq 2$ and let $f=X^{2}+b X+c \in K[X]$. Then $\alpha_{1}+\alpha_{2}=-b$ and $\alpha_{1} \alpha_{2}=c$, and so $D=\left(\alpha_{1}-\alpha_{2}\right)^{2}=b^{2}-4 c$. So the quadratic splits iff $b^{2}-4 c$ is a square (which we knew already).
2. Let char $K \neq 2,3$ and let $f=X^{3}+b X^{2}+c X+d \in K[X]$ be irreducible and separable. Let G be the Galois group of f. Then $G=A_{3}\left(=C_{3}\right)$ iff $D(f)$ is a square, and $G=S_{3}$ otherwise.
To calculate $D(f)$, set $g=f(X-b / 3)$ - this is of the form $X^{3}+p X+q$. Since α is a root of f iff $\alpha+b / 3$ is a root of g, we deduce that $\Delta(f)=\Delta(g)$ and so $D(f)=D(g)$.

Lemma 4.8

Let $f \in K[X]$ be an irreducible, separable polynomial, and let M / K be a splitting field for f. Let $\alpha \in M$ be a root of f and let $L=K(\alpha) \subseteq M$. Then

$$
D(f)=(-1)^{d(d-1) / 2} N_{K / k}\left(f^{\prime}(\alpha)\right)
$$

Proof
Let $\sigma_{1}, \ldots, \sigma_{d}$ be the distinct K-embeddings of L into M. Then

$$
\begin{aligned}
\prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right) & =\prod_{i} \prod_{j \neq i}\left(\alpha_{i}-\alpha_{j}\right) \\
& =\prod_{i} f^{\prime}\left(\alpha_{i}\right) \quad\left(\text { since } f=\prod\left(X-\alpha_{j}\right)\right) \\
& =\prod_{i} \sigma_{i}\left(f^{\prime}(\alpha)\right) \\
& =N_{L / K}\left(f^{\prime}(\alpha)\right)
\end{aligned}
$$

(see Examples Sheet 1, Question 14).

Example

For the cubic $g=X^{3}+p X+q$, as in the example above, set $y=g^{\prime}(\alpha)$. Then $y=3 \alpha^{2}+p=$ $-2 p-3 q \alpha^{-1}$ and so $\alpha=-3 q(y+2 p)^{-1}$. Therefore the minimal polynomial of y is

$$
(y+2 p)^{3}-3 p(y+2 p)^{2}-27 q^{2}
$$

whose constant term is

$$
-4 p^{3}-27 q^{2}=-N_{L / K}(y)=D(g) .
$$

Remark

When $K=\mathbb{Q}$, we can consider the spliting field of f an a subfield of \mathbb{C}. This may be useful.
For example, if $f \in \mathbb{Q}[X]$ is irreducible of degree d with precisely two complex roots, the Galois group contains a transposition (complex conjugation is an element of $\operatorname{Gal}(f)$ switching the two complex roots).
Elementary group theory shows that if $G \subseteq S_{p}$ (p prime) is transitive and contains a transposition, then it contains all transpositions and hence $G=S_{p}$.
So if f is irreducible of degree p with exactly two complex roots, then $\operatorname{Gal}(f)=S_{p}$.
The following proposition (whose proof is left as an exercise) may be helpful when calculating the Galois group of a polynomial.

Proposition 4.9

The transitive subgroups of S_{4} are $S_{4}, A_{4}, D_{8}, C_{4}$, and V_{4}. The transitive subgroups of S_{5} are $S_{5}, A_{5}, G_{20}, D_{10}$ and C_{5}, where G_{20} is generated by a 5 -cycle and a 4-cycle.

5 Galois Theory of Finite Fields

5.1 Finite fields

Recall

If F is a field with $|F|=q$, then $q=p^{r}$ for some r, where $p=\operatorname{char} F$.

Definition

Given such a finite field, there exists an \mathbb{F}_{p}-automorphism $\phi: F \rightarrow F$ given by $\phi(x)=x^{p}$ for all $x \in F$, called the Fröbenius automorphism.

Remarks

1. ϕ is an homomorphism since $1^{p}=p,(x y)^{p}=x^{p} y^{p}$ and $(x+y)^{p}=x^{p}+y^{p}$. It has kernel $\{0\}$ and so is injective, but then since F is finite it is surjective, and hence an automorphism. Also, for $x \in \mathbb{F}_{p}$ we have $x^{p} \equiv x(\bmod p)$, and so ϕ is a \mathbb{F}_{p}-automorphism.
2. Since $\left|F^{*}\right|=q-1$ we have $a^{q-1}=1$ and hence $a^{q}=a$ for all $a \in F$. That is, every element of F is a root of the polynomial $X^{q}-X$. But since $X^{q}-X$ is of degree q it has at most q roots, and so these are all the roots. Therefore F is the splitting field of $X^{q}-X$ over \mathbb{F}_{p}, and as such is unique.
3. If $q=p^{r}$, then there does exist a field of order q. For let F be the splitting field of $X^{q}-X$ over \mathbb{F}_{p}. Clearly F is finite, so let $\phi: F \rightarrow F$ be the Fröbenius automorphism. Let $F^{\prime} \subseteq F$ be the fixed field of $\left\langle\phi^{r}\right\rangle$. But $x \in F^{\prime}$ iff $\phi^{r}(x)=x$ iff x is a root of $X^{q}-X$. So F^{\prime} contains all the roots of $X^{q}-X$ and so $X^{q}-X$ splits in F^{\prime}, and therefore $F=F^{\prime}$. Thus F consists entirely of roots of $X^{q}-X$. These roots are distinct (since the derivative of $X^{q}-X$ is -1 and so it has no roots), and so $|F|=q$ as desired.

Notation

We denote the unique field of order $q=p^{r}$ by \mathbb{F}_{q} or $\operatorname{GF}(q)$.

5.2 Galois groups of finite extensions of finite fields

Remarks

The subfields of $\mathbb{F}_{p^{r}}$ are just $\mathbb{F}_{p^{s}}$ for $s \mid r$, where for each such s there is a unique subfield of order p^{s}, being the fixed field of $\left\langle\phi^{s}\right\rangle$.
Now $\phi^{r}=\operatorname{id}$, but $\phi^{i} \neq \mathrm{id}$ for any $i<r$, since $X^{p^{i}}-X$ has only p^{i} roots. Hence ϕ generates a cyclic group $G=\langle\phi\rangle$ of order r of automorphisms of $\mathbb{F}_{p^{r}}$.
Since the subgroups of $G=\langle\phi\rangle$ are just those of the form $\left\langle\phi^{s}\right\rangle$ for $s \mid r$, we have the following:

1. Any finite extension of finite fields is of the form $L / K=\mathbb{F}_{p^{r}} / \mathbb{F}_{p^{s}}$, where $s \mid r$.
2. L / K is Galois with $\operatorname{Gal}(L / K)$ cyclic of order $[L: K]=r / s$, generated by ϕ^{s}.
3. For each t with $s \mid t$ and $t \mid r$ there exists an intermediate field $M=\mathbb{F}_{p^{t}}$ and a normal subgroup $H=\left\langle\phi^{t}\right\rangle$ such that $M=L^{H}$ and $H=\operatorname{Gal}(L / M)$. Further, these are the only intermediate fields of L / K and subgroups of G.

Thus we have verified the Fundamental Theorem of Galois Theory for finite fields.

Remarks

1. Let K is a finite field, with $f \in K[X]$ an irreducible polynimial of degree d. Then any finite extension L / K is normal, and so if L contains one root of f then it contains all the roots of f. Therefore, the splitting field L of f is of the form $K(\alpha)$, where f is the minimal polynomial for α.
Moreover, $\operatorname{Gal}(f)=\operatorname{Gal}(K(\alpha) / K)$ is cyclic of degree d, and the generator of $\operatorname{Gal}(f)$ acts cyclically on the d roots of f.
2. If $K=\mathbb{F}_{p^{s}}$, then $L=\mathbb{F}_{p^{s d}}$ is unique, so it doesn't depend on the irreducible polynomial of degree d. That is, if we've split one irreducible polynomial of degree d then we've split them all.

Consider the general situation of K a field,

$$
f=X^{n}+c_{n-1} X^{n-1}+\cdots+c_{1} X+c_{0} \in K[X]
$$

a polynomial with distinct roots $\alpha_{1}, \ldots, \alpha_{n}$ in a splitting field L, and $G=\operatorname{Gal}(f)=\operatorname{Gal}(L / K)$ regarded as a subset of S_{n}. Let Y_{1}, \ldots, Y_{n} be independent indeterminates, and for $\sigma \in S_{n}$, let

$$
H_{\sigma}=\left(X-\left(\alpha_{\sigma(1)} Y_{1}+\cdots+\alpha_{\sigma(n)} Y_{n}\right)\right) \in L\left[Y_{1}, \ldots, Y_{n}\right][X]
$$

We can define an action of σ on $H=X-\left(\alpha_{1} Y_{1}+\cdots+\alpha_{n} Y_{n}\right)$ by $\sigma H=H_{\sigma^{-1}}$. Set

$$
\begin{aligned}
F & =\prod_{\sigma \in S_{n}} \sigma H \\
& =\prod_{\sigma \in S_{n}}\left(X-\left(\alpha_{1} Y_{\sigma(1)}+\cdots+\alpha_{n} Y_{\sigma(n)}\right)\right) \\
& =\sum_{j=0}^{n!}\left(\sum_{i_{1}+\cdots+i_{n}=n!-j} a_{i_{1}, \ldots, i_{n}} Y_{1}^{i_{1}} \cdots Y_{n}^{i_{n}}\right) X^{j} .
\end{aligned}
$$

Since S_{n} preserves F, it preserves the coefficients $a_{i_{1}, \ldots, i_{n}}$. The coefficients are in fact certain symmetric polynomials in the α_{i} (which could be given explicitly, independent of f) and hence are polynomials in the coefficients c_{0}, \ldots, c_{n-1} (which could again can be given explicitly, independent of f) (c.f. the Symmetric Function Theorem). Hence $F \in K\left[Y_{1}, \ldots, Y_{n}\right][X]$.
Now factor $F=F_{1} \cdots F_{N}$ into irreducibles in $K\left[Y_{1}, \ldots, Y_{n}\right][X]$, with each F_{i} irreducible in $K\left(Y_{1}, \ldots, Y_{n}\right)[X]$, by Gauss's Lemma.

Remark

In the case $K=\mathbb{Q}$ and $c_{i} \in \mathbb{Z}$, all the polynomials in the c_{0}, \ldots, c_{n-1} have coefficients in \mathbb{Z}, and so $F \in \mathbb{Z}\left[Y_{1}, \ldots, Y_{n}\right][X]$ and we can take the factorization $F=F_{1} \cdots F_{N}$ with $F_{i} \in \mathbb{Z}\left[Y_{1}, \ldots, Y_{n}\right][X]$ (by Gauss's Lemma).

Now choose one of the factors $H=H_{\sigma}$ of F_{1}. By reordering the F_{i} (or the roots $\alpha_{1}, \ldots, \alpha_{n}$) we may assume without loss of generality that $H=\left(X-\left(\alpha_{1} Y_{1}+\cdots+\alpha_{n} Y_{n}\right)\right)$.

Recall that the images σH are all distinct. Now consider $\prod_{g \in G} g H$, with g^{-1} acting on the coefficients of H. This has degree $|G|$ and is in $K\left[Y_{1}, \ldots, Y_{n}\right][X]$, since it is invariant under the action of G.

Since H divides F_{1} in $L\left[Y_{1}, \ldots, Y_{n}\right][X], g H$ divides F_{1} in $L\left[Y_{1}, \ldots, Y_{n}\right][X]$ and so $\prod g H$ divides F_{1} in $K\left[Y_{1}, \ldots, Y_{n}\right][X]$. But F_{1} is irreducible in $K\left[Y_{1}, \ldots, Y_{n}\right][X]$, and hence $\prod g H=F_{1}$.

So $\operatorname{deg} F_{1}=|G|$ and there are $N=n!/|G|$ irreducible factors F_{i}, permuted transitively by the action of S_{n}. Therefore, the orbit-stabilizer theorem implies that

$$
\frac{n!}{\left|\operatorname{Stab}\left(F_{1}\right)\right|}=\frac{n!}{|G|},
$$

so $|G|=\left|\operatorname{Stab}\left(F_{1}\right)\right|$. Since G fixes $F_{1}, G \leq \operatorname{Stab}\left(F_{1}\right)$ and hence $G=\operatorname{Stab}\left(F_{1}\right)$, i.e. $\operatorname{Gal}(f)$ is isomorphic to the subgroup of S_{n} (acting on Y_{1}, \ldots, Y_{n}) which fixes F_{1}.

Theorem 5.1

Suppose $f \in \mathbb{Z}[X]$ is a monic polynomial of degree n with distinct roots in a splitting field. Suppose p is a prime such that the reduction \bar{f} of f modulo p also has distinct roots in a splitting field. If $\bar{f}=g_{1} \cdots g_{r}$ is the the factorization of \bar{f} in $\mathbb{F}_{p}[X]$, say $\operatorname{deg} g_{i}=n_{i}$, then $\operatorname{Gal}(f) \leq S_{n}$ has an element of cyclic type $\left(n_{1}, \ldots, n_{r}\right)$.

Proof

This will follow if we can show $\operatorname{Gal}(\bar{f}) \leq \operatorname{Gal}(f) \leq S_{n}$, since the action of Fröbenius ϕ on the roots of \bar{f} clearly has the cyclic type claimed.

We now run the above programme twice: first over $K=\mathbb{Q}$, identifying $\operatorname{Gal}(f)$ as the subgroup of S_{n} fixing $F_{1} \in \mathbb{Z}\left[Y_{1}, \ldots, Y_{n}\right][X]$, and then with \bar{f} over $K=\mathbb{F}_{p}$. The resulting polynomial we obtain,

$$
\tilde{F} \in \mathbb{F}_{p}\left[Y_{1}, \ldots, Y_{n}\right][X]
$$

is just the reduction $\bmod p$ of F, i.e. $\tilde{F}=\bar{F}$. But $\bar{F}=\bar{F}_{1} \cdots \bar{F}_{N}$ in $\mathbb{F}_{p}\left[Y_{1}, \ldots, Y_{n}\right][X]$, and we can factor $\bar{F}_{1}=h_{1} \cdots h_{m}$, with h_{i} irreducible.

With appropriate choice of the order of the roots $\beta_{1}, \ldots, \beta_{n}$ of \bar{f} in a splitting field, we may identify $\operatorname{Gal}(\bar{f})$ as the subgroup of S_{n} (acting on $\left.Y_{1}, \ldots, Y_{n}\right)$ fixing h_{1}, say. Since, however, the linear factors of \bar{F} are distinct, the subgroup of S_{n} fixing \bar{F}_{1} is the same as the subgroup fixing F_{1}, and $\operatorname{Stab}\left(h_{1}\right)$ is a subgroup of $\operatorname{Stab}\left(\bar{F}_{1}\right)=\operatorname{Stab}\left(F_{1}\right)$. Thus $\operatorname{Gal}(\bar{f}) \leq \operatorname{Gal}(f) \leq S_{n}$ as claimed.

6 Cyclotomic Extensions

Suppose char $K=0$ or p, where $p \nmid m$. The m th cyclotomic extension of K is just the splitting field L over K of $X^{m}-1$.

Since $m X^{m-1}$ and $X^{m}-1$ have no common roots, the roots of $X^{m}-1$ are distinct, the m th roots of unity. They form a finite subgroup μ_{m} of K^{*}, and hence by (2.6) a cyclic group $\langle\xi\rangle$. Thus $L=K(\xi)$ is simple.
An element $\xi^{\prime} \in \mu_{m}$ is called a primitive m th root of unity if $\mu_{m}=\left\langle\xi^{\prime}\right\rangle$. Choosing a primitive m th root of unity determines an isomorphism of cyclic groups

$$
\begin{aligned}
\mu_{m} & \longrightarrow \mathbb{Z} / m \mathbb{Z} \\
\xi^{i} & \longmapsto i
\end{aligned}
$$

Recall that ξ^{i} is a generator of μ_{m} iff $(m, i)=1$, and so the primitive roots correspond to elements of $U(m)=(\mathbb{Z} / m \mathbb{Z})^{*}$, the multiplicative group of units in the ring $\mathbb{Z} / m \mathbb{Z}$.

Since $X^{m}-1$ is separable, L / K is Galois with Galois group G. An element $\sigma \in G$ sends the primitive m th root of untiy ξ to another primitive m th root ξ^{i}, with $(i, m)=1$ (and knowing i determines σ).

Having chosen a primitive m th root of unity, we can define an injective map

$$
\begin{aligned}
\theta: G & \longrightarrow U(m) \\
\sigma & \longmapsto i,
\end{aligned}
$$

where $\sigma(\xi)=\xi^{i}$. If, however, $\theta(\sigma)=i$ and $\theta(\tau)=j$, then $(\sigma \tau)(\xi)=\sigma\left(\xi^{i}\right)=\xi^{i j}$, and so $\theta(\sigma \tau)=\theta(\sigma) \theta(\tau)$. Hence θ is a homomorphism. Via this homomorphism, the Galois group may be considered as a subgroup of $U(m) . \theta$ is an isomorphism iff G acts transitively on the primitive m th roots of unity.

Definition

The mth cyclotomic polynomial is

$$
\Phi_{m}=\prod_{i \in U(m)}\left(X-\xi^{i}\right)
$$

Remark

Observe that

$$
X^{m}-1=\prod_{i \in \mathbb{Z} / m \mathbb{Z}}\left(X-\xi^{i}\right)=\prod_{d \mid m} \Phi_{d}
$$

For example, when $K=\mathbb{Q}, \Phi_{1}=X-1, \Phi_{2}=X+1, \Phi_{4}=X^{2}+1$, and

$$
\begin{aligned}
X^{8}-1 & =\left(X^{4}-1\right)\left(X^{4}+1\right) \\
& =\left(X^{2}-1\right)\left(X^{2}+1\right)\left(X^{4}+1\right) \\
& =(X-1)(X+1)\left(X^{2}+1\right)\left(X^{4}+1\right) \\
& =\Phi_{1} \Phi_{2} \Phi_{4}\left(X^{4}+1\right)
\end{aligned}
$$

and so $\Phi_{8}=X^{4}+1$.

Lemma 6.1

Φ_{m} is defined over the prime subfield of K (that is, over \mathbb{Q} or \mathbb{F}_{p}). When char $k=0, \Phi_{m}$ is defined over \mathbb{Z}.

Proof
The proof is by induction on m. The result is trivial if $m=1$. If $m>1$ then

$$
X^{m}-1=\Phi_{m} \prod_{\substack{d \mid m \\ d \neq m}} \Phi_{d}=\Phi_{m} g
$$

where g is monic and by the induction hypothesis is defined over the prime subfield of K (and over \mathbb{Z} if char $k=0$). By Gauss' Lemma, or by direct argument using the Remainder Theorem, Φ_{m} is also defined over the prime subfield (and over \mathbb{Z} if char $k=0$).

Proposition 6.2

The homomorphism θ (defined above) is an isomorphism iff Φ_{m} is irreducible in $K[X]$.
Proof
Clear, since Φ_{m} is irreducible iff (by (4.7)) G acts transitively on the roots of Φ_{m}.

Proposition 6.3

If L is the mth cyclotomic extension of $K=\mathbb{F}_{q}$, where $q=p^{r}$, and $p \nmid m$, then the Galois group G is isomorphic to the cyclic subgroup of $U(m)$ generated by q.

Proof
G is generated by the Fröbenius automorphism $x \mapsto x^{q}$, and so

$$
G \cong \theta(G)=\langle q\rangle \leq U(m)
$$

Thus if $U(m)$ is not cyclic and K is any finite field, then θ is not an isomorphism, and so Φ_{m} is reducible over K.

Now consider the case $K=\mathbb{Q}$ (and so $\Phi_{m} \in \mathbb{Z}[X]$). If we can show that Φ_{m} is irreducible over \mathbb{Z}, then Φ_{m} must be irreducible over \mathbb{Q} (by Gauss's Lemma) and so $G \cong U(m)$.

Proposition 6.4

For all $m>0, \Phi_{m}$ is irreducible in $\mathbb{Z}[X]$.
Proof
Suppose not, and write $\Phi_{m}=f g$, where $f, g \in \mathbb{Z}[X]$ and f an irreducible monic polynomial with $1 \leq \operatorname{deg} f<\phi(m)=\operatorname{deg} \Phi_{m}$. Let K / \mathbb{Q} be the m th cyclotomic extension, and let ϵ be a root of f in K.

Claim

If $p \nmid m$ is prime, then ϵ^{p} is also a root of f.
Proof
Suppose not. Then ϵ^{p} is a primitive m th root of unity and hence ϵ^{p} is a root of g. Define $h \in \mathbb{Z}[X]$ by $h(X)=g\left(X^{p}\right)$. Then $h(\epsilon)=0$. But then since f is the minimal polynomial for ϵ over $\mathbb{Q}, f \mid h$ in $\mathbb{Q}[X]$ and Gauss' Lemma implies that we can write $h=f l$ with $l \in \mathbb{Z}[X]$ (since f is monic).
Now reduce modulo p to get $\bar{h}=\overline{f l}$ in $\mathbb{F}_{p}[X]$. Now $\bar{h}(X)=\bar{g}\left(X^{p}\right)=(\bar{g}(X))^{p}$. If \bar{q} is any irreducible factor of \bar{f} in $\mathbb{F}_{p}[X]$ then $\bar{q} \mid \bar{g}^{p}$ and so $\bar{q} \mid \bar{g}$. But then $\bar{q}^{2} \mid \bar{f} \bar{g}=\bar{\Phi}_{m}$ and so there exists a repeated root of $\bar{\Phi}_{m}$ and thus a repeated root for $X^{m}-1-$ but this is a contradiction since $(p, m)=1$.

In general, consider now roots ξ of f and γ of g. Then $\gamma=\xi^{r}$ for some r with $(r, m)=1$. Write $r=p_{1} \cdots p_{k}$ as a product of (not necessarily distinct) primes, with $p_{i} \nmid m$ for each i.

Repeated use of our claim implies that γ is a root of f and so Φ_{m} has a repeated root a contradiction. Hence Φ_{m} is irreducible over \mathbb{Q}.

Remark

When $m=p$ is prime, there is a simpler proof of (6.4). For Φ_{p} is irreducible iff $g(X)=$ $\Phi_{p}(X+1)$ is irreducible. But

$$
g(X)=\frac{(X+1)^{p}-1}{(X+1)-1}=X^{p-1}+p X^{p-2}+\binom{p}{2} X^{p-3}+\cdots+p
$$

and so the result follows by Eisenstein's Criterion.

7 Kummer Theory and Solving by Radicals

7.1 Introduction

When is a Galois extension L / K a splitting field for a polynomial of the form $X^{n}-\theta$?

Theorem 7.1

Suppose $X^{n}-\theta \in K[X]$ and char $K \nmid n$. Then the splitting field L contains a primitive nth root of unity ω and the Galois group of $L / K(\omega)$ is cyclic of order dividing n. Moreover, $X^{n}-\theta$ is irreducible over $K(\omega)$ iff $[L: K(\omega)]=n$.

Proof
Since $X^{n}-\theta$ and $n X^{n-1}$ are coprime, $X^{n}-\theta$ has distinct roots $\alpha_{1}, \ldots, \alpha_{n}$ in its splitting field L. Moreover, L / K is Galois.
Since $\left(\alpha_{i} \alpha_{j}^{-1}\right)^{n}=\theta \theta^{-1}=1$, the elements $1=\alpha_{1} \alpha_{1}^{-1}, \alpha_{2} \alpha_{1}^{-1}, \ldots, \alpha_{n} \alpha_{1}^{-1}$ are n distinct nth roots of unity in L and so $X^{n}-\theta=(X-\beta)(X-\omega \beta) \cdots\left(X-\omega^{n-1} \beta\right)$ in $L[X]$. Hence $L=K(\omega, \beta)$
If $\sigma \in \operatorname{Gal}(L / K(\omega))$, it is determined by its action on β. $\sigma(\beta)$ is another root of $X^{n}-\theta$, say $\sigma(\beta)=\omega^{j(\sigma)} \beta$, for some $0 \leq j(\sigma)<n$. If $\sigma, \tau \in \operatorname{Gal}(L / K(\omega))$,

$$
\tau \sigma(\beta)=\tau\left(\omega^{j(\sigma)} \beta\right)=\omega^{j(\sigma)} \tau(\beta)=\omega^{j(\sigma)+j(\tau)} \beta
$$

Therefore the map $\sigma \mapsto j(\sigma)$ induces a homomorphism $\operatorname{Gal}(L / K(\omega)) \rightarrow \mathbb{Z} / n \mathbb{Z}$. As $j(\sigma)=$ β iff σ is the identity, the homomorphism is injective. So $\operatorname{Gal}(L / K(\omega))$ is isomorphic to a subgroup of $\mathbb{Z} / n \mathbb{Z}$ and hence is cyclic of order dividing n.
Finally, observe that $[L: K(\omega)] \leq n$, with equality iff $X^{n}-\theta$ is irreducible over $K(\omega)$, since $L=K(\omega)(\beta)$.

Example

$X^{6}+3$ is irreducible over \mathbb{Q} (by Eisenstein) but not over $\mathbb{Q}(\omega)\left(\right.$ where $\left.\omega=\frac{1}{2}(1+\sqrt{-3})\right)$ since the splitting field $L=\mathbb{Q}\left((-3)^{1 / 6}, \omega\right)=\mathbb{Q}\left((-3)^{1 / 6}\right)$ has degree 3 over $\mathbb{Q}(\omega)=\mathbb{Q}(\sqrt{-3})$. In fact, $X^{6}+3=\left(X^{3}+\sqrt{-3}\right)\left(X^{3}-\sqrt{-3}\right)$ over $\mathbb{Q}(\omega)$.

We now consider the converse problem to (7.1); we shall need a result proved on Example Sheet 1, Question 13.

Proposition 7.2

Suppose that K and L are fields and $\sigma_{1}, \ldots, \sigma_{n}$ are distinct embeddings of K into L. Then there do not exist $\lambda_{1}, \ldots, \lambda_{n} \in L$ (not all zero) such that $\lambda_{1} \sigma_{1}(x)+\cdots+\lambda_{n} \sigma_{n}(x)=0$ for all $x \in K$.

Proof

If such a relation did exist, choose one with the least number $r>0$ of non-zero λ_{i}. Hence wlog $\lambda_{1}, \ldots, \lambda_{r}$ are all non-zero and $\lambda_{1} \sigma_{1}(x)+\cdots+\lambda_{r} \sigma_{r}(x)=0$ for all $x \in K$. Clearly we
have $r>1$, since if $\lambda_{1} \sigma_{1}(x)=0$ for all x then $\lambda_{1}=0$. We now produce a relation with fewer than r terms, and hence a contradiction.
Choose $y \in K$, such that $\sigma_{1}(y) \neq \sigma_{r}(y)$. The above relation implies that $\lambda_{1} \sigma_{1}(y x)+\cdots+$ $\lambda_{r} \sigma_{r}(y x)=0$ for all $x \in K$. Thus $\lambda_{1} \sigma_{1}(y) \sigma_{1}(x)+\cdots+\lambda_{r} \sigma_{r}(y) \sigma_{r}(x)=0$, so multiply the original relation by $\sigma_{r}(y)$ and subtract, to get

$$
\lambda_{1} \sigma_{1}(x)\left(\sigma_{1}(y)-\sigma_{r}(y)\right)+\cdots+\lambda_{r-1} \sigma_{r-1}(x)\left(\sigma_{r-1}(y)-\sigma_{r}(y)\right)=0
$$

for all $x \in K$, which gives the required contradiction.

Definition

An extension L / K is called cyclic if it is Galois and $\operatorname{Gal}(L / K)$ is cyclic.

Theorem 7.3

Suppose L / K is a cyclic extension of degree n, where char $K \nmid n$, and that K contains a primitive nth root of unity ω, Then there exists $\theta \in K$ such that $X^{n}-\theta$ is irreducible over K and L / K is a splitting field for $X^{n}-\theta$. If β^{\prime} is a root of $X^{n}-\theta$ in a splitting field then $L=K\left(\beta^{\prime}\right)$.

Definition

Such an extension is called a radical extension.

Proof

Let σ be a generator of the cyclic group $\operatorname{Gal}(L / K)$. Since $1, \sigma, \sigma^{2}, \ldots, \sigma^{n-1}$ are distinct automorphisms of $L,(7.2)$ implies that there exists $\alpha \in L$ such that

$$
\beta=\alpha+\omega \sigma(\alpha)+\cdots+\omega^{n-1} \sigma^{n-1}(\alpha) \neq 0 .
$$

Observe that $\sigma(\beta)=\omega^{-1} \beta$; thus $\beta \notin K$ and $\sigma\left(\beta^{n}\right)=\sigma(\beta)^{n}=\beta^{n}$. So let $\theta=\beta^{n} \in K$.
As $X^{n}-\theta=(X-\beta)(X-\omega \beta) \cdots\left(X-\omega^{n-1} \beta\right)$ in $L, K(\beta)$ is a splitting field for $X^{n}-\theta$ over K. Since $1, \sigma, \ldots, \sigma^{n-1}$ are distinct K-automorphisms of $K(\beta)$, (4.3) implies that $[K(\beta): K] \geq n$, and hence $L=K(\beta)$. Thus $L=K\left(\beta^{\prime}\right)$ for any root β^{\prime} of $X^{n}-\theta$, since $\beta^{\prime}=\omega^{i} \beta$ for some $0 \leq i \leq n-1$.
The irreducibility of $X^{n}-\theta$ over K follows since it is the minimal polynomial for β, and $[L: K]=n$.

Definition

A field extension L / K is an extension by radicals if there exists a tower

$$
K=L_{0} \subset L_{1} \subset \cdots \subset L_{n}=L
$$

such that each extension L_{i+1} / L_{i} is a radical extension. A polynomial $f \in K[X]$ is said to be soluble by radicals if its splitting field lies in an extension of K by radicals.

7.2 Cubics

Let char $K \neq 2,3$ and let $f \in K[X]$ be an irreducible cubic. Let L be the splitting field for f over K. Let ω be a primitive cube root of unity, and let $D=\Delta^{2}$ be the discriminant.

Set $M=L(\omega)$ - then M is Galois over $K(\omega)$. We have a diagram with degrees as shown:

Hence $\operatorname{Gal}(M / K(\Delta, \omega))=C_{3}$. Therefore, (7.3) implies that $M=K(\Delta, \omega)(\beta)$, where β is a root of an irreducible polynomial $X^{3}-\theta$ over $K(\Delta, \omega)$.

In fact, the proof of (7.3) implies that $\beta=\alpha_{1}+\omega \alpha_{2}+\omega^{2} \alpha_{3}$, where $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the roots of f. Since all the extensions $K \subseteq K(\Delta) \subseteq K(\Delta, \omega) \subseteq M$ are radical, any cubic can by solved by radicals.
Explicitly, reduce down to the case of cubics $g(X)=X^{3}+p X+q$. Then $D=-4 p^{3}-27 q^{2}$. Set

$$
\begin{aligned}
& \beta=\alpha_{1}+\omega \alpha_{2}+\omega^{2} \alpha_{3}, \\
& \gamma=\alpha_{1}+\omega^{2} \alpha_{2}+\omega \alpha_{3} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\beta \gamma & =\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}+\left(\omega+\omega^{2}\right)\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}\right) \\
& =\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)^{2}-3\left(\alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{1}\right) \\
& =-3 p
\end{aligned}
$$

and so $\beta^{3} \gamma^{3}=-27 p^{3}$, and

$$
\begin{aligned}
\beta^{3}+\gamma^{3} & =\left(\alpha_{1}+\omega \alpha_{2}+\omega^{2} \alpha_{3}\right)^{3}+\left(\alpha_{1}+\omega^{2} \alpha_{2}+\omega \alpha_{3}\right)^{3}+\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)^{3} \\
& =3\left(\alpha_{1}^{3}+\alpha_{2}^{3}+\alpha_{3}^{3}\right)+18 \alpha_{1} \alpha_{2} \alpha_{3} \\
& =-27 q,
\end{aligned}
$$

since $\alpha_{i}^{3}=-p \alpha_{i}-q$ and so $\left(\alpha_{1}^{3}+\alpha_{2}^{3}+\alpha_{3}^{3}\right)=-3 q$. So β^{3} and γ^{3} are roots of the quadratic $X^{2}+27 q X-27 p^{3}$, and so are

$$
-\frac{27}{2} q \pm \frac{3 \sqrt{-3}}{2}\left(-27 q^{2}-4 p^{3}\right)^{1 / 2}=-\frac{27}{2} q \pm \frac{3 \sqrt{-3}}{2} \sqrt{D} .
$$

We can solve for β^{3} and γ^{3} in $K(\sqrt{-3 D}) \subseteq K(\omega, \sqrt{D})$. We obtain β by adjoining a cube root of β^{3}, and then $\gamma=-3 p / \beta$.
Finally, we solve in M for $\alpha_{1}, \alpha_{2}, \alpha_{3}$ - namely

$$
\alpha_{1}=\frac{1}{3}(\beta+\gamma), \quad \alpha_{2}=\frac{1}{3}\left(\omega^{2} \beta+\omega \gamma\right), \quad \alpha_{3}=\frac{1}{3}\left(\omega \beta+\omega^{2} \gamma\right) .
$$

7.3 Quartics

Recall there exists an action of S_{4} on the set $\{\{\{1,2\},\{3,4\}\},\{\{1,3\},\{2,4\}\},\{\{1,4\},\{2,3\}\}\}$ of unordered pairs of unordered pairs. So we have a surjective homomorphism $S_{4} \rightarrow S_{3}$ with kernel $V_{4}=\{\mathrm{id},(12)(34),(13)(24),(14)(23)\}$, and hence an isomorphism $S_{4} / V \cong S_{3}$.

Suppose now that f is an irreducible separable quartic over K. Then the Galois group G is a transitive subgroup of S_{4}, with normal subgroup $G \cap V$ such that $G /(G \cap V)$ is isomorphic to a subgroup of S_{3}.

Let M be the splitting field of f over K and let $L=M^{G \cap V}$. Since $V \subset A_{4}, L \supseteq M^{G \cap A_{4}}=K(\Delta)$, as observed before. Moreover, $\operatorname{Gal}(L / K(\Delta))$ is isomorphic to a subgroup of $A_{4} / V \cong C_{3}$, namely $G \cap A_{4} / G \cap V(\mathrm{FTGT})$.

Hence we have the tower of extensions:

We claim that f can be solved by radicals.
For if we adjoin a primitive cube root of unity ω, then either f is reducible over $K(\omega)$, in which case we know already we can solve by radicals, or f is irreducible over $K(\omega)$. So, wlog, we may assume that K contains cube roots of unity.

Then $K(\Delta) / K$ is a radical extension. (7.3) implies that $L / K(\Delta)$ is a radical extension. So L / K is the composite of at most two radical extensions, and hence the claim follows.

We now see explicitly how this works. Assume that char $K \neq 2,3$. Wlog, we reduce to polynomials of the form

$$
f=X^{4}+p X^{2}+q X+r .
$$

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ denote the roots of f in M (so $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=0$). Thus $M=$ $K\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$. Set

$$
\beta=\alpha_{1}+\alpha_{2}, \quad \gamma=\alpha_{1}+\alpha_{3}, \quad \delta=\alpha_{1}+\alpha_{4} .
$$

Then

$$
\begin{aligned}
& \beta^{2}=\left(\alpha_{1}+\alpha_{2}\right)^{2}=-\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{4}\right) \\
& \gamma^{2}=\left(\alpha_{1}+\alpha_{3}\right)^{2}=-\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right) \\
& \delta^{2}=\left(\alpha_{1}+\alpha_{4}\right)^{2}=-\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right) .
\end{aligned}
$$

Note that these are distinct - for example if $\beta^{2}=\gamma^{2}$ then $\beta= \pm \gamma$ and so either $\alpha_{2}=\alpha_{3}$ or $\alpha_{1}=\alpha_{4}$.

Now $\beta^{2}, \gamma^{2}, \delta^{2}$ are permuted by G. They are invariant only under the elements of $G \cap V$, so $\operatorname{Gal}\left(M / K\left(\beta^{2}, \gamma^{2}, \delta^{2}\right)\right)=G \cap V$. Therefore $L=M^{G \cap V}=K\left(\beta^{2}, \gamma^{2}, \delta^{2}\right)$.
Consider now the polynomial $g=\left(X-\beta^{2}\right)\left(X-\gamma^{2}\right)\left(X-\delta^{2}\right)$. Since the elements of G can only permute these three factors, g must have coefficients fixed by G, and so $g \in K[X] . g$ is called the resolvant cubic.

Explicit checks yield

$$
\begin{gathered}
\beta^{2}+\gamma^{2}+\delta^{2}=-2 p \\
\beta^{2} \gamma^{2}+\beta^{2} \delta^{2}+\gamma^{2} \delta^{2}=p^{2}-4 v \\
\beta \gamma \delta=-q
\end{gathered}
$$

(inspection)
(multiply out)
(inspection)
Thus the resolvant cubic is

$$
X^{3}+2 p X^{2}+\left(p^{2}-4 r\right) X-q^{2}
$$

L is the splitting field for g over K. So if we solve g for $\beta^{2}, \gamma^{2}, \delta^{2}$ by radicals, we can then solve for β, γ, δ by taking square roots (taking care to choose signs so that $\beta \gamma \delta=-q$). Then we solve for the roots

$$
\alpha_{1}=\frac{1}{2}(\beta+\gamma+\delta), \quad \alpha_{2}=\frac{1}{2}(\beta-\gamma-\delta), \quad \alpha_{3}=\frac{1}{2}(-\beta+\gamma-\delta), \quad \alpha_{4}=\frac{1}{2}(-\beta-\gamma+\delta)
$$

7.4 Insolubility of the general quintic by radicals

Definition

A group G is soluble if there exists a finite series of subgroups

$$
1=G_{n} \subset G_{n-1} \subset \cdots \subset G_{0}=G
$$

such that $G_{i} \triangleleft G_{i-1}$ with G_{i-1} / G_{i} cyclic, for each $1 \leq i \leq n$.

Examples

1. S_{4} is soluble. For if $G_{1}=A_{4}, G_{2}=V$ and $G_{3}=\langle(12)\rangle=C_{2}$, then

$$
1=G_{4} \leq G_{3} \leq G_{2} \leq G_{1} \leq G_{0}=S_{4}
$$

and $G_{0} / G_{1} \cong C_{2}, G_{1} / G_{2} \cong C_{3}$ and $G_{2} / G_{3} \cong G_{3} / G_{4} \cong C_{2}$.
2. Using the structure theorem for abelian groups, it is easily seen that any finitely generated abelian group is soluble.

Theorem 7.4

1. If G is a soluble group and A is a subgroup of G, then A is soluble.
2. If G is a group and $H \triangleleft G$, then G is soluble iff both H and G / H are soluble.

Proof

1. We have a series of subgroups

$$
1=G_{n} \triangleleft G_{n-1} \triangleleft \cdots \triangleleft G_{0}=G
$$

such that G_{i-1} / G_{i} is cyclic for $1 \leq i \leq n$. Let $A_{i}=A \cap G_{i}$ and $\theta: A_{i-1} \rightarrow G_{i-1} / G_{i}$ be the composite homomorphism $A_{i-1} \hookrightarrow G_{i-1} \hookrightarrow G_{i-1} / G_{i}$. Then

$$
\begin{aligned}
\operatorname{ker} \theta & =\left\{a \in A_{i-1} \mid a G_{i}=G_{i}\right\} \\
& =A_{i-1} \cap G_{i} \\
& =A \cap G_{i-1} \cap G_{i} \\
& =A \cap G_{i} \\
& =A_{i} .
\end{aligned}
$$

So for each $i, A_{i} \triangleleft A_{i-1}$ and A_{i-1} / A_{i} is isomorphic to a subgroup of G_{i-1} / G_{i} and hence cyclic. Therefore A is soluble.
2. A similar but longer argument - see a book.

Example

For $n \geq 5$, a standard result says that A_{n} is simple (i.e. there does not exist a proper normal subgroup) and hence non-soluble. Hence (7.4) implies that S_{n} is also non-soluble.

We now relate solubility of the Galois group to solubility of polynomial equations $f=0$ by radicals. Assume for simplicity that char $K=0$. An argument similar to that used for the quartic in $\S 7.3$ shows that if f has a soluble Galois group, then f is soluble by radicals. (The basic idea is that if M / K is a splitting field for f, with $d=[M: K]$, we first adjoin a primitive d th root of unity and then repeatedly use (7.3).)
We're mainly interested in the converse. Suppose then $L=L_{0} \subset L_{1} \subset \cdots \subset L_{r}=N$ is an extension by radicals. Even if L contains all the requisite roots of unity and L_{i} / L_{i-1} is Galois and cyclic, it doesn't follow that N / L is Galois.

Proposition 7.5

Suppose that L / K is a Galois extension and that $M=L(\beta)$, with β a root of $X^{n}-\theta$ for some $\theta \in L$. Then there exists an extension by radicals N / M such that N / K is Galois.

Proof

If necessary we adjoin a primitive nth root of unity ϵ to M, so $X^{n}-\theta$ factorizes over $M(\epsilon)$ as $(X-\beta)(X-\epsilon \beta) \cdots\left(X-\epsilon^{n-1} \beta\right) . M(\epsilon)$ is a splitting field for $X^{n}-\theta$ over L, and so $M(\epsilon) / L$ is Galois. Let $G=\operatorname{Gal}(L / K)$ and define

$$
f=\prod_{\sigma \in G}\left(X^{n}-\sigma(\theta)\right) .
$$

The coefficients of f are invariant under the action of G and so $f \in K[X]$.
Since L / K is Galois, it is the splitting field for some polynomial $g \in K[X]$. let N be the splitting field for $f g$ - so N / K is normal. Moreover, N is obtained from M by first adjoining ϵ and then adjoining a root of each polynomial $X^{n}-\sigma(\theta)$ for $\sigma \in G$. So N / M is an extension by radicals.

Corollary 7.6

Suppose M / K is an extension by radicals. Then there exists an extension by radicals N / M such that N / K is Galois.

Proof

We have $K=K_{0} \subset K_{1} \subset \cdots \subset K_{r}=M$, with $K_{i}=K_{i-1}\left(\beta_{i}\right)$ for some $\beta_{i} \in K_{i}$ satisfying $X^{n_{i}}-\theta_{i}=0$ for some $\theta_{i} \in K_{i-1}, n_{i} \in \mathbb{N}$.

We now argue by induction on r. Suppose the Corollary to be true for $r-1$, so that there exists an extension by radicals N^{\prime} / K_{r-1} such that N^{\prime} / K is Galois. Let f_{r} be the minimal polynomial for β_{r} over K_{r-1} and let g_{r} be an irreducible factor of f_{r} considered as a polynomial in $N^{\prime}[X]$. Let $N^{\prime}(\gamma) / N^{\prime}$ be the extension of N^{\prime} obtained by adjoining a root γ of g_{r}. We consider $K_{r-1} \subseteq N^{\prime} \subseteq N(\gamma)$, so that γ has minimal polynomial f_{r} over K_{r-1} (since $f_{r}(\gamma)=0$ and by assumption f_{r} is irreducible). We may identify $K_{r}=K_{r-1}\left(\beta_{r}\right) \cong K_{r-1}(\gamma)$. Therefore $N^{\prime}(\gamma)$ is an extension by radicals of $K_{r}=K_{r-1}(\gamma)$.
By assumption N^{\prime} / K is Galois and contains a root of $X^{n_{r}}-\theta_{r}$, where $\theta_{r} \in K_{r-1} \subseteq N^{\prime}$. So (7.5) implies that there exists an extension by radicals $N / N^{\prime}(\gamma)-$ and so N is an extension by radicals of $K_{r}=M$ - such that N / K is Galois.

Theorem 7.7

Suppose that $f \in K[X]$ and that there exists an extension by radicals

$$
K=K_{0} \subset K_{1} \subset \cdots \subset K_{r}=M
$$

where $K_{i}=K_{i-1}\left(\beta_{i}\right)$ and β_{i} is a root of $X^{n_{i}}-\theta_{i}$, over which f splits completely. Then $\operatorname{Gal}(f)$ is soluble.

Proof

By (7.6) we may assume that M / K is Galois. Let $n=\operatorname{lcm}\left(n_{1}, \ldots, n_{r}\right)$, and let ϵ be a primitive nth root of unity.
If $\operatorname{Gal}(M / K)$ is soluble, then the splitting field of f is an intermediate field $K \subseteq K^{\prime} \subseteq M$ and $\operatorname{Gal}(f)=\operatorname{Gal}\left(K^{\prime} / K\right)$ is a quotient of $\operatorname{Gal}(M / K)$ and hence soluble by (7.4).
So it remains to show that $\operatorname{Gal}(M / K)$ is soluble. Assume first that $\epsilon \in K$, and let $G_{i}=$ $\operatorname{Gal}\left(M / K_{i}\right)$. Therefore $1=G_{r} \leq G_{r-1} \leq \cdots \leq G_{1} \leq G_{0}=\operatorname{Gal}(M / K)$. Moreover, each extension $K_{i}=K_{i-1}(\beta) / K_{i-1}$ is a Galois extension (since $\epsilon \in K$) with cyclic Galois group (by (7.1)). So apply the fundamental theorem of Galois theory to the Galois extension M / K_{i-1} and we get that $G_{i} \triangleleft G_{i-1}$ with G_{i-1} / G_{i} cyclic. Therefore $G_{0}=\operatorname{Gal}(M / K)$ is soluble.

If, however, $\epsilon \notin K$, set $L=K(\epsilon)$. Clearly $M(\epsilon) / K$ is Galois. Set $G^{\prime}=\operatorname{Gal}(M(\epsilon) / L)$ - this is soluble by the previous argument (as $\epsilon \in L$). If $G=\operatorname{Gal}(M(\epsilon) / K)$, then $G / G^{\prime}=\operatorname{Gal}(K(\epsilon) / K)$ is the Galois group of a cyclotomic extension, hence abelian, and hence soluble. So (7.4) implies that G is soluble and hence $\operatorname{Gal}(M / K)$ is also soluble.

Remark

There exist many irreducible quintics $f \in \mathbb{Q}[X]$ with Galois group S_{5} (or A_{5}). Therefore (7.7) implies that we cannot in general solve quintics by radicals.

