Galois Theory: Extra Example Sheet

- 1. Let L/K be a finite Galois extension with Galois group $\{\sigma_1, \ldots, \sigma_n\}$. Show that the subset $\{\alpha_1, \ldots, \alpha_n\} \subset L$ is a K-basis for L if and only if $\det(\sigma_i(\alpha_i)) \neq 0$.
- 2. Let $\Phi_n \in \mathbb{Z}[X]$ denote the n^{th} cyclotomic polynomial. We notice that for some small values of n the coefficients of Φ_n are always -1, 0 or 1. However this is not true in general. The aim of this question is to find the smallest counterexample. Show that:
 - (i) If n is odd then $\Phi_{2n}(X) = \Phi_n(-X)$.
 - (ii) If p is a prime dividing n then $\Phi_{np}(X) = \Phi_n(X^p)$.
 - (iii) If p and q are distinct primes then the nonzero coefficients of Φ_{pq} are alternately +1 and -1. [Hint: First show that if $1/(1-X^p)(1-X^q)$ is expanded as a power series in X, then the coefficients of X^m with m < pq are either 0 or 1.]
 - (iv) If n is not divisible by at least three distinct odd primes then the coefficients of Φ_n are -1, 0 or 1.
 - (v) $\Phi_{3\times5\times7}$ has at least one coefficient which is not -1, 0 or 1.
- 3. (Hilbert's Theorem 90). Let L/K be a Galois extension with cyclic Galois group of order n > 1, generated by σ . The aim of this question is to show that for $y \in L^{\times}$ we have

$$y = x/\sigma(x)$$
 for some $x \in L^{\times} \iff N_{L/K}(y) = 1$.

- (i) Show that if $x \in L^{\times}$ and $y = x/\sigma(x)$, then $N_{L/K}(y) = 1$.
- (ii) Suppose that $y \in L^{\times}$ with $N_{L/K}(y) = 1$. Let $a_0 = 1$ and for $1 \leq k < n$, let $a_k = \prod_{0 \leq i \leq k-1} \sigma^i(y)$. Show that

$$\sigma(a_k) = \begin{cases} y^{-1} a_{k+1} & \text{if } k < n-1\\ y^{-1} a_0 & \text{if } k = n-1. \end{cases}$$

(iii) Use the theorem on the linear independence of field homomorphisms to show that there exists $z \in L$ for which

$$x = a_0 z + a_1 \sigma(z) + \dots + a_{n-1} \sigma^{n-1}(z)$$

satisfies $y = x/\sigma(x)$.

- 4. Let $L = k(X_1, X_2, ..., X_n)$ be the field of rational functions in n variables over a field k, and let $K = k(s_1, s_2, ..., s_n)$, where the s_i are the elementary symmetric polynomials in $X_1, ..., X_n$.
 - (i) Let $\alpha = X_1 X_2 \dots X_r$ for some $r \leq n$. Calculate $[K(\alpha) : K]$ and find the Galois group $\operatorname{Gal}(L/K(\alpha))$ as an explicit subgroup of S_n .
 - (ii) Let n = 4 and $\beta = (X_1 + X_2)(X_3 + X_4)$. Calculate $[K(\beta) : K]$ and find the Galois group $Gal(L/K(\beta))$ as an explicit subgroup of S_4 .

- 5. (Inverse Galois problem for finite abelian groups) Recall from Part II Number Theory the structure of the groups $(\mathbb{Z}/m\mathbb{Z})^{\times}$: if $m = \prod p^{r(p)}$ is the prime factorisation of m, then $(\mathbb{Z}/m\mathbb{Z})^{\times} \simeq \prod (\mathbb{Z}/p^{r(p)}\mathbb{Z})^{\times}$ (by the Chinese Remainder Theorem), and for prime powers we have:
 - if p is odd then $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ is cyclic of order $(p-1)p^{r-1}$;
 - if $r \geqslant 2$ then $(\mathbb{Z}/2^r\mathbb{Z})^{\times} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{r-2}\mathbb{Z}$.
 - (i) Dirichlet's theorem on primes in arithmetic progressions states that if a and b are coprime positive integers, then the set $\{an + b \mid n \in \mathbb{N}\}$ contains infinitely many primes. Use this to show that every finite abelian group is isomorphic to a quotient of $(\mathbb{Z}/m\mathbb{Z})^{\times}$ for suitable m.
 - (ii) Deduce that every finite abelian group is the Galois group of some Galois extension K/\mathbb{Q} . [It is a long-standing unsolved problem to show this holds for an arbitrary finite group.]
 - (iii) Find an explicit α for which $\mathbb{Q}(\alpha)/\mathbb{Q}$ is abelian with Galois group $\mathbb{Z}/23\mathbb{Z}$.
- 6. (Normal basis theorem) The aim of this question is to show that if L/K is a finite Galois extension then L/K has a basis of the form $\{\sigma(y) \mid \sigma \in \operatorname{Gal}(L/K)\}$ for some $y \in L$. Such a basis is called a *normal basis*.
 - (i) Let $G = \{ id = \sigma_1, \ldots, \sigma_n \}$ be a finite group. Let $A = (a_{ij})$ be the $n \times n$ matrix with entries in $\mathbb{Z}[X_1, \ldots, X_n]$ such that $a_{ij} = X_k$ whenever $\sigma_i \sigma_j = \sigma_k$. Let $D(X_1, \ldots, X_n) = \det(A)$. Show that $D(1, 0, \ldots, 0) \neq 0$.
 - (ii) Let K be an infinite field. Show that if $F \in K[X_1, \ldots, X_n]$ is not the zero polynomial, then there exist $x_1, \ldots, x_n \in K$ with $F(x_1, \ldots, x_n) \neq 0$.
 - (iii) Prove that every finite Galois extension L/K has a normal basis, first in the case where K is infinite (use (i), (ii) and Question 1) and then in the case Gal(L/K) is cyclic (by viewing L as a K[X]-module and applying the structure theorem).
- 7. (Gauss sums) In this question, $\zeta_m = e^{2\pi i/m} \in \mathbb{C}$ for a positive integer m.
 - (i) Let p be an odd prime. Show that if $r \in \mathbb{Z}$ then $\sum_{0 \le s < p} \zeta_p^{rs}$ equals p if $r \equiv 0 \pmod{p}$ and equals 0 otherwise.
 - (ii) Let $\tau = \sum_{0 \le n < p} \zeta_p^{n^2}$. Show that $\tau \overline{\tau} = p$. Show also that τ is real if -1 is a square mod p, and otherwise τ is purely imaginary (i.e. $\tau/i \in \mathbb{R}$).
 - (iii) Let $L = \mathbb{Q}(\zeta_p)$. Show that L has a unique subfield K which is quadratic over \mathbb{Q} , and that $K = \mathbb{Q}(\sqrt{\varepsilon p})$ where $\varepsilon = (-1)^{(p-1)/2}$.
 - (iv) Show that $\mathbb{Q}(\zeta_m) \subset \mathbb{Q}(\zeta_n)$ if m|n. Deduce that if $0 \neq m \in \mathbb{Z}$ then $\mathbb{Q}(\sqrt{m})$ is a subfield of $\mathbb{Q}(\zeta_{4|m|})$. [This is a simple case of the *Kronecker-Weber Theorem*, which states that every finite abelian extension of \mathbb{Q} is contained in some $\mathbb{Q}(\zeta_n)$.]