Galois Theory: Example Sheet 4 of 4

- 1. Let $K = \mathbb{Q}(\zeta_n)$ be the cyclotomic field with $\zeta_n = e^{2\pi i/n}$. Show that under the isomorphism $\operatorname{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$, complex conjugation is identified with the residue class of $-1 \pmod{n}$. Deduce that if $n \ge 3$, then $[K : K \cap \mathbb{R}] = 2$ and show that $K \cap \mathbb{R} = \mathbb{Q}(\zeta_n + \zeta_n^{-1}) = \mathbb{Q}(\cos 2\pi/n)$. Is this a Galois extension of \mathbb{Q} ?
- 2. (i) Find all the subfields of $\mathbb{Q}(\zeta_7)$, expressing them in the form $\mathbb{Q}(\alpha)$.
 - (ii) Find the quadratic subfields of $\mathbb{Q}(\zeta_{15})$.
- 3. (i) Let K be a field, p a prime and K' = K(ζ) for some primitive pth root of unity ζ. Let a ∈ K. Show that X^p a is irreducible over K if and only if it is irreducible over K'. Is the result true if p is not assumed to be prime?
 (ii) If K contains a primitive sthemast of unity then we know that X^p = a is

(ii) If K contains a primitive n^{th} root of unity, then we know that $X^n - a$ is reducible over K if and only if a is a d^{th} power in K for some divisor d > 1 of n. Show that this need not be true if K doesn't contain a primitive n^{th} root of unity.

- 4. Let K be a field containing a primitive m^{th} root of unity for some m > 1. Let a, $b \in K$ such that the polynomials $f = X^m a$, $g = X^m b$ are irreducible. Show that f and g have the same splitting field if and only if $b = c^m a^r$ for some $c \in K$ and $r \in \mathbb{N}$ with gcd(r, m) = 1.
- 5. Let K be a field of characteristic p > 0. Let $a \in K$, and let $f \in K[X]$ be the polynomial $f(X) = X^p - X - a$. Show that f(X + c) = f(X) for every $c \in \mathbb{F}_p \subset K$. Now suppose that f does not have a root in K, and let L/K be a splitting field for f over K. Show that $L = K(\alpha)$ for any $\alpha \in L$ with $f(\alpha) = 0$, and that L/K is Galois, with Galois group cyclic of order p. [L/K is called an Artin-Schreier extension.]
- 6. Use the linear independence of field embeddings to show that if L/K is a finite separable extension then the trace map $\operatorname{Tr}_{L/K} : L \to K$ is non-zero. Deduce that the K-bilinear form $L \times L \to K$; $(x, y) \mapsto \operatorname{Tr}_{L/K}(xy)$ is nondegenerate.
- 7. Let G be a finite group. Prove that if G is soluble then so is every subgroup and quotient of G.
- 8. Let $\alpha = \sqrt{2} + \sqrt{2}$. By showing that $\alpha = 2\cos(\pi/8)$ give another proof of the result in lectures that $\mathbb{Q}(\alpha)$ is a Galois extension of \mathbb{Q} with Galois group C_4 .

Hence, or otherwise, show that $\mathbb{Q}(\sqrt{2+\sqrt{2}+\sqrt{2}})$ is a Galois extension of \mathbb{Q} and determine its Galois group.

9. Let p_1, \ldots, p_n be distinct primes, and let $K = \mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_n})$. Show that K/\mathbb{Q} is a Galois extension, and that there is an injective group homomorphism $\operatorname{Gal}(K/\mathbb{Q}) \to \mu_2^n$. Then show by induction on n that $[K : \mathbb{Q}] = 2^n$.

Michaelmas Term 2024

- 10. Show that for any finite group G there exists a Galois extension whose Galois group is isomorphic to G. [Hint: Use Cayley's theorem.]
- 11. Let K be any field, and let L = K(X) be the field of rational functions over K. Define mappings $\sigma, \tau : L \to L$ by the formulae

$$(\sigma f)(X) = f\left(1 - \frac{1}{X}\right), \quad (\tau f)(X) = f\left(\frac{1}{X}\right)$$

Show that σ, τ are automorphisms of L, and that they generate a subgroup $G \subset Aut(L)$ isomorphic to S_3 . Show that $L^G = K(h(X))$ where

$$h(X) = \frac{(X^2 - X + 1)^3}{X^2(X - 1)^2}.$$

12. Let K be any field, and let L = K(X).

(i) Show that for any $a \in K$ there exists a unique $\sigma_a \in \operatorname{Aut}(L/K)$ such that $\sigma_a(X) = X + a$.

(ii) Let $G = \{\sigma_a \mid a \in K\}$. Show that G is a subgroup of $\operatorname{Aut}(L/K)$, isomorphic to the additive group of K. Show that if K is infinite, then $L^G = K$.

(iii) Assume that K has characteristic p > 0, and let $H = \{\sigma_a \mid a \in \mathbb{F}_p\}$. Show that $L^H = K(Y)$ with $Y = X^p - X$. [Use Artin's theorem.]

Further problems

13. Show that $\mathbb{Q}(\zeta_{21})$ has exactly three subfields of degree 6 over \mathbb{Q} . Show that one of them is $\mathbb{Q}(\zeta_7)$, one is real, and the other is a cyclic extension $K/\mathbb{Q}(\zeta_3)$. Use a suitable Lagrange resolvent to find $a \in \mathbb{Q}(\zeta_3)$ such that $K = \mathbb{Q}(\zeta_3, \sqrt[3]{a})$.

14. Let L/K be a Galois extension with Gal(L/K) ≅ C_p, generated by σ.
(i) Show that for any x ∈ L, Tr_{L/K}(σ(x) - x) = 0. Deduce that if y ∈ L then Tr_{L/K}(y) = 0 if and only if there exists x ∈ L with σ(x) - x = y.
(ii) Suppose that K has characteristic p. By considering α ∈ L with σ(α) - α = 1, show that L/K is an extension of the form considered in Question 5.

15. (i) Show that if $\alpha \in \overline{\mathbb{Q}} \setminus \mathbb{Q}$ then there exists $\sigma \in \operatorname{Aut}(\overline{\mathbb{Q}}/\mathbb{Q})$ with $\sigma(\alpha) \neq \alpha$. [This shows that $\overline{\mathbb{Q}}/\mathbb{Q}$ is a Galois extension.]

(ii) Let K be a field. By considering a suitable subfield of an algebraic closure, or otherwise, prove that there exists a separable extension K^{sep}/K in which every separable polynomial over K splits into linear factors. Show also that K^{sep}/K is a Galois extension. [K^{sep} is called a *separable closure* of K.]

16. Let K_1 and K_2 be algebraically closed fields of the same characteristic. Show that either K_1 is isomorphic to a subfield of K_2 or K_2 is isomorphic to a subfield of K_1 . [Use Zorn's Lemma.]