Galois Theory: Example Sheet 3 of 4

- 1. Give an example to show that if M/L and L/K are finite Galois extensions, then M/K need not be Galois.
- 2. Find the Galois group of $X^4 + X^3 + 1$ over each of the finite fields \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_4 .
- 3. (i) Let p be an odd prime, and let α ∈ F_{pⁿ}. Show that α ∈ F_p if and only if α^p = α, and that α + α⁻¹ ∈ F_p if and only if either α^p = α or α^p = α⁻¹.
 (ii) Apply (i) to a root of X² + 1 in a suitable extension of F_p to show that -1 is a square in F_p if and only if p ≡ 1 (mod 4). [You will probably have seen different proofs of this fact in earlier courses.]
 (iii) Show that α⁴ = -1 if and only if (α + α⁻¹)² = 2. Deduce that 2 is a square

(iii) Show that $\alpha^4 = -1$ if and only if $(\alpha + \alpha^{-1})^2 = 2$. Deduce that 2 is a square in \mathbb{F}_p if and only if $p \equiv \pm 1 \pmod{8}$.

- 4. Let L/K be an extension of finite fields. Suppose that #K = q and write σ for the q-power Frobenius. Using the fact that L/K is Galois, with Galois group generated by σ , show that the maps $\operatorname{Tr}_{L/K}: L \to K$ and $N_{L/K}: L \to K$ are surjective.
- 5. Let f be a monic quartic polynomial, and g its resolvent cubic. Show that the discriminants of f and g are equal.
- 6. (i) What are the transitive subgroups of S_4 ? Find a monic polynomial over \mathbb{Z} of degree 4 whose Galois group is $V = \{ id, (12)(34), (13)(24), (14)(23) \}.$

(ii) Let $f \in \mathbb{Z}[X]$ be monic and separable of degree n. Suppose that the Galois group of f over \mathbb{Q} doesn't contain an n-cycle. Prove that the reduction of f modulo p is reducible for every prime p.

(iii) Hence exhibit an irreducible polynomial over \mathbb{Z} whose reduction mod p is reducible for every p.

- 7. (i) Let p be prime. Show that any transitive subgroup G of S_p contains a p-cycle. Show that if G also contains a transposition then $G = S_p$.
 - (ii) Prove that the Galois group of $X^5 + 2X + 6$ is S_5 .

(iii) Show that if $f \in \mathbb{Q}[X]$ is an irreducible polynomial of degree p which has exactly two non-real roots, then its Galois group is S_p . Deduce that for $m \in \mathbb{Z}$ sufficiently large,

$$f = X^{p} + mp^{2}(X - 1)(X - 2) \cdots (X - p + 2) - p$$

has Galois group S_p .

8. Compute the Galois group of $X^5 - 2$ over \mathbb{Q} .

- 9. Let $f \in \mathbb{Q}[X]$ be an irreducible quartic polynomial whose Galois group is A_4 . Show that its splitting field can be written in the form $K(\sqrt{a}, \sqrt{b})$ where K/\mathbb{Q} is a Galois cubic extension and $a, b \in K$. Show that the resolvent cubic of $X^4 + 6X^2 + 8X + 9$ has Galois group C_3 and deduce that the quartic has Galois group A_4 .
- 10. Show that the Galois group of $f(X) = X^5 4X + 2$ over \mathbb{Q} is S_5 , and determine its Galois group over $\mathbb{Q}(i)$.
- 11. Find the Galois group of $f(X) = X^4 4X + 2$ over \mathbb{Q} and over $\mathbb{Q}(i)$.
- 12. Let p be an odd prime. Show that $K = \mathbb{Q}(\zeta_p)$ has a unique subfield of degree 2 over \mathbb{Q} . Let $f(X) = (X^p - 1)/(X - 1)$. Show that $f'(\zeta_p) = p\zeta_p^{p-1}/(\zeta_p - 1)$ and $N_{K/\mathbb{Q}}(f'(\zeta_p)) = p^{p-2}$. Compute the discriminant of f and deduce that the unique quadratic subfield of K is $\mathbb{Q}(\sqrt{\pm p})$ for some choice of sign. How does the correct choice of sign depend on p?

Further problems

- 13. Give an example of a field K of characteristic p > 0 and α and β of the same degree over K so that $K(\alpha)$ is not isomorphic to $K(\beta)$. Does such an example exist if K is a finite field? Justify your answer.
- 14. Factor into irreducibles $X^9 X$ over \mathbb{F}_3 , and $X^{16} X$ over both \mathbb{F}_2 and \mathbb{F}_4 .
- 15. Write $a_n(q)$ for the number of irreducible monic polynomials in $\mathbb{F}_q[X]$ of degree exactly n.

(i) Show that an irreducible polynomial $f \in \mathbb{F}_q[X]$ of degree d divides $X^{q^n} - X$ if and only if d divides n.

(ii) Deduce that $X^{q^n} - X$ is the product of all irreducible monic polynomials of degree dividing n, and that

$$\sum_{d|n} da_d(q) = q^n.$$

(iii) Calculate the number of irreducible polynomials of degree 6 over \mathbb{F}_2 .

(iv) If you know about the Möbius function $\mu(n)$, use the Möbius inversion formula to show that

$$a_n(q) = \frac{1}{n} \sum_{d|n} \mu(n/d) q^d.$$

- 16. Find the Galois groups of $X^5 15X + 21$ and $X^4 + X + 1$ over \mathbb{Q} .
- 17. Show that the Galois group of $X^5 + 20X + 16$ over \mathbb{Q} is A_5 .