Example sheet 4, Galois Theory (Michaelmas 2022)

> a.j.scholl@dpmms.cam.ac.uk

Trace and norm

1. Let $L / K=\mathbb{F}_{p^{r}}$ be an extension of finite fields. Using the fact that L / K is Galois, generated by $\sigma=\phi_{p}^{r}$, show directly that $\operatorname{Tr}_{L / K}: L \rightarrow K$ is surjective. Show also that $N_{L / K}$ is surjective.
2. Let L / K be a Galois extension with cyclic Galois group of prime order p, generated by σ.
(i) Show that for any $x \in L, \operatorname{Tr}_{L / K}(\sigma(x)-x)=0$. Deduce that if $y \in L$ then $\operatorname{Tr}_{L / K}(y)=0$ if and only if there exists $x \in L$ with $\sigma(x)-x=y$.
(ii) Suppose that K has characteristic p. Use (i) to show that any element of K can be written in the form $\sigma(x)-x$ for some $x \in L$. Show also that if $\sigma(x)-x=1$ then $a=x^{p}-x \in K$. Deduce that L / K is the splitting field of polynomial of the form $T^{p}-T-a$. (Compare this result with Q. 13 on sheet 3.)
3. (Hilbert's Theorem 90). Let L / K be a Galois extension with cyclic Galois group of order $n>1$, generated by σ.
(i) Show that if $x \in L^{\times}$and $y=x / \sigma(x)$, then $N_{L / K}(y)=1$.
(ii) Suppose that $y \in L^{\times}$with $N_{L / K}(y)=1$. Let $a_{0}=1$ and for $1 \leq k<n, a_{k}=\prod_{0 \leq i \leq k-1} \sigma^{i}(y)$. Show that

$$
\sigma\left(a_{k}\right)= \begin{cases}y^{-1} a_{k+1} & \text { if } k<n-1 \\ y^{-1} a_{0} & \text { if } k=n-1\end{cases}
$$

(iii) Use the theorem on the linear independence of field homomorphisms to show that there exists $z \in L$ for which

$$
x=a_{0} z+a_{1} \sigma(z)+\cdots+a_{n-1} \sigma^{n-1}(z)
$$

satisfies $y=x / \sigma(x)$.

Algebraic closure

4. Let F be a finite field. By considering the multiplicative group of F, or otherwise, write down a non-constant polynomial over F which does not have a root in F. Deduce that F cannot be algebraically closed.
5. * Let K_{1} and K_{2} be algebraically closed fields of the same characteristic. Show that either K_{1} is isomorphic to a subfield of K_{2} or K_{2} is isomorphic to a subfield of K_{1}. (Use Zorn's Lemma.)
6. Let K be a field. By considering a suitable subfield of an algebraic closure, or otherwise, prove that there exists a separable extension $K^{\text {sep }} / K$ in which every separable polynomial over K splits into linear factors, and that the extension $K^{\text {sep }} / K$ is unique up to isomorphism. Show also that $K^{\text {sep }} / K$ is a Galois extension. ($K^{\text {sep }}$ is called a separable closure of K.)
7. Let K be a field. Show that a splitting field exists (and is unique up to isomorphism) for any (possibly infinite) set of polynomials over K.

Quartics

8. Let $f \in K[T]$ be a monic irreducible separable quartic, with vanishing coefficient of T^{3}, and let g be its resolvant cubic. Show that the discriminants of f and g are equal.
9. Let $f \in \mathbb{Q}[T]$ be an irreducible quartic polynomial whose Galois group is A_{4}. Show that its splitting field can be written in the form $K(\sqrt{a}, \sqrt{b})$ where K / \mathbb{Q} is a Galois cubic extension and $a, b \in K$.
10. (i) Find the Galois group of $f=T^{4}-4 T+2$ over \mathbb{Q},
(ii) Find the Galois group of f over $\mathbb{Q}(i)$.

Artin's Theorem

11. Show that for any finite group G there exists a Galois extension whose Galois group is isomorphic to G. (Hint: use Cayley's Theorem)
12. Let k be any field, and let $L=k(X)$. Define mappings $\sigma, \tau: L \rightarrow L$ by the formulae

$$
\tau f(X)=f\left(\frac{1}{X}\right), \quad \sigma f(X)=f\left(1-\frac{1}{X}\right)
$$

Show that σ, τ are automorphism of L, and that they generate a subgroup $G \subset \operatorname{Aut}(L)$ isomorphic to S_{3}. Show that $L^{H}=k(g(X))$ where

$$
g(X)=\frac{\left(X^{2}-X+1\right)^{3}}{X^{2}(X-1)^{2}}
$$

13. Let K be any field and $L=K(X)$ the field of rational functions over K.
(i) Show that for any $a \in K$ there exists a unique $\sigma_{a} \in \operatorname{Aut}(L / K)$ such that $\sigma_{a}(X)=X+a$.
(ii) Let $G=\left\{\sigma_{a} \mid a \in K\right\}$. Show that G is a subgroup of $\operatorname{Aut}(L / K)$, isomorphic to the additive group of K. Show that if K is infinite, then $L^{G}=K$.
(iii) Assume that K has characteristic $p>0$, and let $H=\left\{\sigma_{a} \mid a \in \mathbb{F}_{p}\right\}$. Show that $L^{H}=K(Y)$ with $Y=X^{p}-X$. (Use Artin's theorem.)
