This sheet covers lectures 13-17 (Galois groups of polynomials, finite fields, cyclotomic and Kummer extensions)

1. (i) What are the transitive subgroups of S_{4} ? Find a monic polynomial over \mathbb{Z} of degree 4 whose Galois group is $V=\{e,(12)(34),(13)(24),(14)(23)\}$.
(ii) Let $f \in \mathbb{Z}[X]$ be monic and separable of degree n. Suppose that the Galois group of f over \mathbb{Q} doesn't contain an n-cycle. Prove that the reduction of f modulo p is reducible for every prime p.
(iii) Hence exhibit an irreducible polynomial over \mathbb{Z} whose reduction $\bmod p$ is reducible for every p.
2. (i) Let p be prime. Show that any transitive subgroup G of S_{p} contains a p-cycle. Show that if G also contains a transposition then $G=S_{p}$.
(ii) Prove that the Galois group of $X^{5}+2 X+6$ is S_{5}.
(iii) Show that if $f \in \mathbb{Q}[X]$ is an irreducible polynomial of degree p which has exactly two non-real roots, then its Galois group is S_{p}. Deduce that for $m \in \mathbb{Z}$ sufficiently large,

$$
f=X^{p}+m p^{2}(X-1)(X-2) \cdots(X-p+2)-p
$$

has Galois group S_{p}.
3. Compute the Galois group of $X^{5}-2$ over \mathbb{Q}.
4. (i) Let p be an odd prime, and let $x \in \mathbb{F}_{p^{n}}$. Show that $x \in \mathbb{F}_{p}$ iff $x^{p}=x$, and that $x+x^{-1} \in \mathbb{F}_{p}$ iff either $x^{p}=x$ or $x^{p}=x^{-1}$.
(ii) Apply (i) to a root of $X^{2}+1$ in a suitable extension of \mathbb{F}_{p} to show that that -1 is a square in \mathbb{F}_{p} if and only if $p \equiv 1(\bmod 4)$. (You have probably seen a different proof of this fact in IB GRM.)
(iii) Show that $x^{4}=-1$ iff $\left(x+x^{-1}\right)^{2}=2$. Deduce that 2 is a square in \mathbb{F}_{p} if and only if $p \equiv \pm 1$ $(\bmod 8)$.
5. Find the Galois group of $X^{4}+X^{3}+1$ over each of the finite fields $\mathbb{F}_{2}, \mathbb{F}_{3}, \mathbb{F}_{4}$.
6. Let L / K be Galois with group $G=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$. Show that $\left(x_{1}, \ldots, x_{n}\right)$ is a K-basis for L iff $\operatorname{det} \sigma_{i}\left(x_{j}\right) \neq 0$.
7. (i) Let $f(X)=\prod_{i=1}^{n}\left(X-x_{i}\right)$. Show that $f^{\prime}\left(x_{i}\right)=\prod_{j \neq i}\left(x_{i}-x_{j}\right)$, and deduce that $\operatorname{Disc}(f)=$ $(-1)^{n(n-1) / 2} \prod_{i=1}^{n} f^{\prime}\left(x_{i}\right)$.
(ii) Let $f(X)=X^{n}+b X+c=\prod_{i=1}^{n}\left(X-x_{i}\right)$, with $n \geq 2$. Show that

$$
x_{i} f^{\prime}\left(x_{i}\right)=(n-1) b\left(\frac{-n c}{(n-1) b}-x_{i}\right)
$$

and deduce that

$$
\operatorname{Disc}(f)=(-1)^{n(n-1) / 2}\left((1-n)^{n-1} b^{n}+n^{n} c^{n-1}\right) .
$$

8. Let $K=\mathbb{Q}\left(\zeta_{n}\right)$ be the cyclotomic field with $\zeta_{n}=e^{2 \pi i / n}$. Show that under the isomorphism $\operatorname{Gal}(K / \mathbb{Q}) \simeq(\mathbb{Z} / n \mathbb{Z})^{*}$, complex conjugation is identified with the residue class of $-1(\bmod n)$. Deduce that if $n \geqslant 3$, then $[K: K \cap \mathbb{R}]=2$ and show that $K \cap \mathbb{R}=\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)=\mathbb{Q}(\cos 2 \pi / n)$.
9. Find all the subfields of $\mathbb{Q}\left(e^{2 \pi i / 7}\right)$, expressing them in the form $\mathbb{Q}(x)$.
10. Let K be a field, p a prime and $K^{\prime}=K(\zeta)$ for some primitive $p^{\text {th }}$ root of unity ζ. Let $a \in K$. Show that $X^{p}-a$ is irreducible over K if and only if it is irreducible over K^{\prime}. Is the result true if p is not assumed to be prime?
11. Let K be a field containing a primitive $m^{\text {th }}$ root of unity for some $m>1$. Let $a, b \in K$ such that the polynomials $f=X^{m}-a, g=X^{m}-b$ are irreducible. Show that f and g have the same splitting field if and only if $b=c^{m} a^{r}$ for some $c \in K$ and $r \in \mathbb{N}$ with $\operatorname{gcd}(r, m)=1$.
12. (i) Find the quadratic subfields of $\mathbb{Q}\left(\zeta_{15}\right)$.
(ii) Show that $\mathbb{Q}\left(\zeta_{21}\right)$ has exactly three subfields of degree 6 over \mathbb{Q}. Show that one of them is $\mathbb{Q}\left(\zeta_{7}\right)$, one is real, and the other is a cyclic extension $K / \mathbb{Q}\left(\zeta_{3}\right)$. Use a suitable Lagrange resolvent to find $a \in \mathbb{Q}\left(\zeta_{3}\right)$ such that $K=\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{a}\right)$.

The next example gives an analogue of Theorem 12.3 in characteristic p.
13. Let K be a field of characteristic $p>0$. Let $a \in K$, and let $f \in K[X]$ be the polynomial $f(X)=X^{p}-X-a$. Show that $f(X+b)=f(X)$ for every $b \in \mathbb{F}_{p} \subset K$. Now suppose that f does not have a root in K, and let L / K be a splitting field for f over K. Show that $L=K(x)$ for any $x \in L$ with $f(x)=0$, and that L / K is Galois, with Galois group isomorphic to $\mathbb{Z} / p \mathbb{Z}$. (L / K is called an Artin-Schreier extension.)

Additional examples (of varying difficulty)

14. Write $a_{n}(q)$ for the number of irreducible monic polynomials in $\mathbb{F}_{q}[X]$ of degree exactly n.
(i) Show that an irreducible polynomial $f \in \mathbb{F}_{q}[X]$ of degree d divides $X^{q^{n}}-X$ if and only if d divides n.
(ii) Deduce that $X^{q^{n}}-X$ is the product of all irreducible monic polynomials of degree dividing n, and that

$$
\sum_{d \mid n} d a_{d}(q)=q^{n}
$$

(iii) Calculate the number of irreducible polynomials of degree 6 over \mathbb{F}_{2}.
(iv) If you know about the Möbius function $\mu(n)$, use the Möbius inversion formula to show that

$$
a_{n}(q)=\frac{1}{n} \sum_{d \mid n} \mu(n / d) q^{d} .
$$

15. Let $\Phi_{n} \in \mathbb{Z}[X]$ denote the $n^{\text {th }}$ cyclotomic polynomial. Show that:
(i) If n is odd then $\Phi_{2 n}(X)=\Phi_{n}(-X)$.
(ii) If p is a prime dividing n then $\Phi_{n p}(X)=\Phi_{n}\left(X^{p}\right)$.
(iii) If p and q are distinct primes then the nonzero coefficients of $\Phi_{p q}$ are alternately +1 and -1 . [Hint: First show that if $1 /\left(1-X^{p}\right)\left(1-X^{q}\right)$ is expanded as a power series in X, then the coefficients of X^{m} with $m<p q$ are either 0 or 1.]
(iv) If n is not divisible by at least three distinct odd primes then the coefficients of Φ_{n} are $-1,0$ or 1.
(v) $\Phi_{3 \times 5 \times 7}$ has at least one coefficient which is not $-1,0$ or 1 .
