Example sheet 1, Galois Theory (Michaelmas 2022)

a.j.scholl@dpmms.cam.ac.uk

This sheet covers lectures 1-6. Questions which might be more challenging are marked *.
Polynomials and symmetric polynomials

1. (i) Find the greatest common divisor of the polynomials $f=X^{3}-3$ and $g=X^{2}+1$ in $\mathbb{Q}[X]$, expressing the result in the form $a f+b g$ for polynomials a, b.
(ii) Do the same for f and g in $\mathbb{F}_{5}[X]$. (Note that the answer is not the same as in (i).)
2. Express $\sum_{i \neq j} X_{i}^{3} X_{j}$ as a polynomial in the elementary symmetric polynomials.
3. Show that if X_{1}, \ldots, X_{n} are indeterminates, then

$$
\left|\begin{array}{cccc}
X_{1}^{n-1} & X_{2}^{n-1} & \cdots & X_{n}^{n-1} \\
X_{1}^{n-2} & X_{2}^{n-2} & \cdots & X_{n}^{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
X_{1} & X_{2} & \cdots & X_{n} \\
1 & 1 & \cdots & 1
\end{array}\right|=\Delta=\prod_{1 \leq i<j \leq n}\left(X_{i}-X_{j}\right)
$$

(First show that each $\left(X_{i}-X_{j}\right)$ is a factor of the determinant).

Fields and algebraic elements

4. (Quadratic extensions) Let L / K be an extension of degree 2 . Show that if the characteristic of K is not 2 , then $L=K(x)$ for some $x \in L$ with $x^{2} \in K$.

* Show that if the characteristic is 2 , then either $L=K(x)$ with $x^{2} \in K$, or $L=K(x)$ with $x^{2}+x \in K$.

5. Find the minimal polynomials over \mathbb{Q} of the complex numbers $\sqrt[5]{3}, i+\sqrt{2}, \sin (2 \pi / 5)$.
6. Let $f(X)=X^{3}+X^{2}-2 X+1 \in \mathbb{Q}[X]$. Use Gauss's Lemma to show that f is irreducible. Suppose that x has minimal polynomial f over \mathbb{Q}, and let $y=x^{4}$. Find $a, b, c \in \mathbb{Q}$ such that $y=a+b x+c x^{2}$. Do the same for $y=\left(1-x^{2}\right)^{-1}$.
7. Let L / K be an extension and $x \in L$. Show that

$$
K[x]=\bigcap_{\substack{K \subset R \subset L \\ x \in R \\ R \text { a ring }}} R \quad \text { and } \quad K(x)=\bigcap_{\substack{K \subset F \subset L \\ x \in F \\ F \text { a field }}} F .
$$

Tower law

8. (i) Let L / K be a finite extension whose degree is prime. Show that there is no intermediate extension $L \supsetneqq K^{\prime} \supsetneqq K$.
(ii) Let x be algebraic over K of odd degree. Show that $K(x)=K\left(x^{2}\right)$.
9. Let L / K be a finite extension and $f \in K[X]$ an irreducible polynomial of degree $d>1$. Show that if d and $[L: K]$ are coprime, f has no roots in L.

Others

10. (i) Let K be a field, and $r=p / q \in K(X)$ a non-constant rational function. Find a polynomial in $K(r)[T]$ which has X as a root.
(ii) Let L be a subfield of $K(X)$ containing K. Show that either $K(X) / L$ is finite, or $L=K$. Deduce that the only elements of $K(X)$ which are algebraic over K are constants.
11. Show that a regular 7 -gon is not constructible by ruler and compass.

Additional (starred) examples for enthusiasts (of varying difficulty)

12. For I an n-tuple $I=\left(i_{1}, \ldots, i_{n}\right)$ with $i_{1} \geq i_{2} \geq \cdots \geq i_{n}$, recall we have defined the monomial $X_{I}=\prod X_{\alpha}^{i_{\alpha}}$. Let S_{I} be the sum of all monomials X_{J} obtained from X_{I} by a permutation of indices. (For example, $S_{(2,1,1)}=X_{1}^{2} X_{2} X_{3}+X_{1} X_{2}^{2} X_{3}+X_{1} X_{2} X_{3}^{2}$.) Show that the elementary symmetric polynomials s_{r} and the power sums p_{k} are of the form S_{I} for suitable I, and that every symmetric polynomial in $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ can be expressed uniquely in the form $\sum_{I} c_{I} S_{I}$ with $c_{I} \in \mathbb{Z}$. Show also that for every I and J

$$
S_{I} S_{J}=S_{I+J}+\sum_{K<I+J} c_{K} S_{K}
$$

for integers c_{K}. (Here $<$ denotes lexicographical ordering.)
13. Show that an algebraic extension L / K of fields is finite if and only if it is finitely generated; i.e. iff $L=K\left(x_{1}, \ldots, x_{n}\right)$ for some $x_{i} \in L$. Prove that the algebraic numbers (zeros of polynomials with rational coefficients) form a subfield of \mathbb{C} which is not finitely generated over \mathbb{Q}.
14. Let R be a ring, and K a subring of R which is a field. Show that if R is an integral domain and $\operatorname{dim}_{K} R<\infty$ then R is a field. Show that the result fails without the assumption that R is a domain.
15. Let K and L be subfields of a field M such that M / K is finite. Denote by $K L$ the set of all finite sums $\sum x_{i} y_{i}$ with $x_{i} \in K$ and $y_{i} \in L$. Show that $K L$ is a subfield of M, and that

$$
[K L: K] \leq[L: K \cap L]
$$

16. Suppose that L / K is an extension with $[L: K]=3$. Show that for any $x \in L$ and $y \in L-K$ we can find $p, q, r, s \in K$ such that $x=\frac{p+q y}{r+s y}$.
[Hint: Consider four appropriate elements of the 3-dimensional vector space L.]
17. Let L / K be an extension, and $x, y \in L$ transcendental over K. Show that x is algebraic over $K(y)$ iff y is algebraic over $K(x)$. [x,y are then said to be algebrically dependent.]
