Extra example sheet, Galois Theory (Michaelmas 2022)

```
a.j.scholl@dpmms.cam.ac.uk
```

These are some extra questions for those who have found the 4 example sheets too easy/short.

1. Show that the Galois group of $f=T^{5}-4 T+2$ over \mathbb{Q} is S_{5}, and determine its Galois group over $\mathbb{Q}(i)$.
2. Suppose that $L=K(x, y)$, where x is transcendental over K and y is algebraic over K. Show that if $y \notin K$ then L / K is not a simple extension.
3. Let L / K be an infinite algebraic extension. Show that L / K is Galois if and only if $K=$ $L^{\operatorname{Aut}(L / K)}$. [Hint: reduce to the case of a finite extension.]
4. Recall from Number Theory IIC the structure of the groups $(\mathbb{Z} / m \mathbb{Z})^{\times}$: if $m=\prod p^{r(p)}$ is the prime factorisation of m, then $(\mathbb{Z} / m \mathbb{Z})^{\times} \simeq \prod\left(\mathbb{Z} / p^{r(p)} \mathbb{Z}\right)^{\times}$(by Chinese Remainder Theorem), and for prime powers we have:
— if p is odd then $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$is cyclic of order $(p-1) p^{r-1}$;

- if $r \geq 2$ then $\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{r-2} \mathbb{Z}$.
(i) * Dirichlet's theorem on primes in arithmetic progressions states that if a and b are coprime positive integers, then the set $\{a n+b \mid n \in \mathbb{N}\}$ contains infinitely many primes. Use this to show that every finite abelian group is isomorphic to a quotient of $(\mathbb{Z} / m \mathbb{Z})^{*}$ for suitable m.
(ii) Deduce that every finite abelian group is the Galois group of some Galois extension K / \mathbb{Q}. [It is a long-standing unsolved problem to show this holds for an arbitrary finite group.]
(iii) Find an explicit x for which $\mathbb{Q}(x) / \mathbb{Q}$ is abelian with Galois group $\mathbb{Z} / 23 \mathbb{Z}$.

5. (i) Let $f \in K[T]$ be a monic separable polynomial of degree n, with roots x_{i} in a splitting field L. Let

$$
g_{i}=\frac{f}{f^{\prime}\left(x_{i}\right)\left(T-x_{i}\right)} \in L[T] \quad(1 \leq i \leq n) .
$$

Show that:

$$
\begin{gather*}
g_{1}+\cdots+g_{n}=1 \tag{1}\\
g_{i} g_{j} \equiv\left\{\begin{array}{lll}
0 & \bmod (f) & \text { if } j \neq i \\
g_{i} & \bmod (f) & \text { if } j=i
\end{array}\right. \tag{2}
\end{gather*}
$$

(Equation (1) is the "partial fractions" decomposition of $1 / f$.)
(ii) Let L / K be a finite Galois extension with Galois group $G=\left\{i d=\sigma_{1}, \ldots, \sigma_{n}\right\}$. Let $x \in L$ be a primitive element with minimal polynomial $f \in K[T]$, and $x_{i}=\sigma_{i}(x)$. Let $\mathbf{A}=\left(A_{i j}\right)$ be the matrix with entries $A_{i j}=\sigma_{i} \sigma_{j} g_{1}$. Use (2) to show that $\mathbf{A}^{T} \mathbf{A} \equiv \mathbf{I} \bmod (f)$.
(iii) Assume that K is infinite. Use (ii) to show that there exists $b \in K$ such that $\operatorname{det}\left(\sigma_{i} \sigma_{j} g_{1}(b)\right) \neq$ 0 . Deduce that if $y=g_{1}(b)$ then $\{\sigma(y) \mid \sigma \in G\}$ is a K-basis for L.
Such a basis $\{\sigma(y)\}$ is said to be a normal basis for L / K, and the result just proved is the Normal Basis Theorem.
6. In this question, $\zeta_{m}=e^{2 \pi i / m} \in \mathbb{C}$ for a positive integer m.
(i) Let p be an odd prime. Show that if $r \in \mathbb{Z}$ then $\sum_{0 \leq s<p} \zeta_{p}^{r s}$ equals p if $r \equiv 0(\bmod p)$ and equals 0 otherwise.
(ii) Let $\tau=\sum_{0 \leq n<p} \zeta_{p}^{n^{2}}$. Show that $\tau \bar{\tau}=p$. Show also that τ is real if -1 is a square $\bmod p$, and otherwise τ is purely imaginary (i.e. $\tau / i \in \mathbb{R}$).
(iii) Let $L=\mathbb{Q}\left(\zeta_{p}\right)$. Show that L has a unique subfield K which is quadratic over \mathbb{Q}, and that $K=\mathbb{Q}(\sqrt{\varepsilon p})$ where $\varepsilon=(-1)^{(p-1) / 2}$.
(iv) Show that $\mathbb{Q}\left(\zeta_{m}\right) \subset \mathbb{Q}\left(\zeta_{n}\right)$ if $m \mid n$. Deduce that if $0 \neq m \in \mathbb{Z}$ then $\mathbb{Q}(\sqrt{m})$ is a subfield of $\mathbb{Q}\left(\zeta_{4|m|}\right)$. [This is a simple case of the Kronecker-Weber Theorem, which states that every finite abelian extension of \mathbb{Q} is contained in some $\mathbb{Q}\left(\zeta_{n}\right)$.]
7. Show that $\mathbb{Q}(\sqrt{2+\sqrt{2+\sqrt{2}}})$ is an abelian extension of \mathbb{Q}, and determine its Galois group.
8. (i) Let $f \in K(X)$. Show that $K(X)=K(f)$ if and only if $f=(a X+b) /(c X+d)$ for some $a, b, c, d \in K$ with $a d-b c \neq 0$.
(ii) Show that $\operatorname{Aut}(K(X) / K) \simeq P G L_{2}(K)$.
9. * Show that for any $n>1$ the polynomial $T^{n}+T+3$ is irreducible over \mathbb{Q}. Determine its Galois group for $n \leq 5$.

