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1. Let K be a field of characteristic p > 0. Let a ∈ K, and let f ∈ K[X] be the polynomial
f(X) = Xp −X − a. Show that f(X + b) = f(X) for every b ∈ Fp ⊂ K. Now suppose
that f does not have a root in K, and let L/K be a splitting field for f over K. Show
that L = K(x) for any x ∈ L with f(x) = 0, and that L/K is Galois, with Galois group
isomorphic to Z/pZ.

2. Let K be a field, p a prime and K ′ = K(ζ) for some primitive pth root of unity ζ. Let
a ∈ K. Show that Xp − a is irreducible over K if and only if it is irreducible over K ′. Is
the result true if p is not assumed to be prime?

3. If K contains a primitive nth root of unit, show that Xn − a ∈ K[X] is reducible over
K if and only if a is a dth power in K for some divisor d > 1 of n. Show that this need
not be true if K doesn’t contain an nth root of unity.

4. Let K be a field containing a primitive mth root of unity for some m > 1. Let a, b ∈ K
such that the polynomials f = Xm − a, g = Xm − b are irreducible. Show that f and
g have the same splitting field if and only if b = cmar for some c ∈ K and r ∈ N with
gcd(r,m) = 1.

5. Consider the polynomial f = X3 + 3X2 − 1 over Q. Show that there exist δ ∈ Q and
γ ∈ Q(δ1/2) such that f splits over K = Q(δ1/2)(γ1/3).

6. For n a positive integer, write ζn = e2πi/n. Show that Q(ζ21) has exactly three
subfields of degree 6 over Q. Show that one of them is Q(ζ7), one is real, and the other
is a cubic extension K = Q(ζ3, ζ7 + ζ−17 ) of Q(ζ3). Show that the minimal polynomial of
ζ7 + ζ−17 = 2 cos (2π/7) over Q(ζ3) is X3 + X2 − 2X − 1. [Using the general solution of
cubics from §8, it can be shown that K = Q(ζ3, 3

√
a), where a = 7(1 + 3

√
−3)/2 ∈ Q(ζ3)].

7. Let f ∈ Q[X] be an irreducible quartic polynomial whose Galois group is A4. Show
that its splitting field can be written in the form K(

√
a,
√
b) where K/Q is a Galois cubic

extension and a, b ∈ K. Show that the resolvant cubic of X4 + 6X2 + 8X + 9 has Galois
group C3 (cf. Example Sheet 2, Q10) and deduce that the quartic has Galois group A4.

8. Let f ∈ k[X] be a quartic polynomial with distinct roots in a splitting field, and
g ∈ k[X] its resolvant cubic. Show that the discriminant of g is the same as that of f .

9. Find the Galois groups of the polynomials X5−4X+ 2 and X4−4X+ 2 over Q. What
are their Galois groups over Q(i)?

10. Show that X4 +X2 +X + 1 is irreducible over F3, and find its Galois group over Q.

11. Let f ∈ k[X] be an irreducible (separable) quartic, with Galois group G ⊂ S4. Let
V ⊂ S4 be the 4-group, containing pairs of transpositions. Show that G∩V is either V or
a subgroup of index 2 in V . In both cases, determine the various possibilities for G.

12. Let F,E be intermediate fields of a finite separable field extension K ⊂ L. Show that
if F/K and E/K are soluble extensions, then FE/K is also soluble. (Here FE denotes
the composite field of F and E as in Example Sheet 1, Q11.)
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13. Let f = X5 + 20X + 16 ∈ Q[X]; show that f has four complex roots. Using Example
4.9, show that the discriminant of f is D = 21656; deduce that the reduction of f mod
2 or 5 must have repeated roots (in a splitting field). Explain why the reduction of f
modulo any other prime cannot split into the product of an irreducible quadratic and an
irreducible cubic. Deduce that the polynomial is irreducible over F3. Assuming only the
fact that A5 is simple, show that Gal(f) = A5. [Hint: Reduce modulo another suitable
prime. If you did Question 13 on Example Sheet 3, it might help to look at your answer.]

14. Let L/K be a Galois extension with cyclic Galois group of prime order p, generated
by σ.

(i) Show that for any x ∈ L, TrL/K(σ(x) − x) = 0. Deduce that if y ∈ L then
TrL/K(y) = 0 if and only if there exists x ∈ L with σ(x)− x = y.

(ii) Suppose that K has characteristic p. Use (i) to show that any element of K
can be written in the form σ(x) − x for some x ∈ L. Show also that if σ(x) − x = 1
then a = xp − x ∈ K. Deduce that L/K is the splitting field of polynomial of the form
Xp −X − a. (Compare this result with Q1.)

15. Let G be the group of invertible n×n upper triangular matrices with entries in a finite
field F . Show that G is soluble.

16. Explain why cos (2π/17) may be written in terms of radicals. ∗∗Now explicitly do it!

17. (i) If f : A5 → GL(2,C) is a homomorphism, why must f have image in SL(2,C)?
Suppose σ ∈ A5 is one of the 15 elements of order 2; show that f(σ) = ±I, where I denotes
the 2× 2 identity matrix. Using the fact that A5 is simple, deduce that f must be trivial.

(ii) Suppose now that Ã5 ⊂ SU(2) denotes the binary icosahedral group and g : Ã5 →
C∗ a homomorphism. Show that either g is trivial, or g(−I) = −1. In the latter case show
that there is a homomorphism A5 → GL(2,C), induced by σ̃ 7→ g(σ̃)σ̃ for σ̃ ∈ Ã5, which
by (i) must then be trivial. Deduce that the latter case does not occur and thus that g
itself must be trivial.

18. Let G̃ ⊂ SU(2) be the subgroup of order 16 generated by matrices(
ζ 0
0 ζ−1

)
,

(
0 i
i 0

)
where ζ is a primitive 8th root of unity. The elements σ̃ of G̃ act on C2 via matrix
multiplication, and thus on the polynomial ring R = C[X1, X2] via (σ̃f)(x) = f(σ̃−1x),
and on the 2-sphere C∞ by Möbius transformations. Find the invariant homogeneous
quartics and prove that there are no invariant quadratics or sextics. ∗Show that any
homogeneous polynomial in R corresponding to an orbit of size 8 in C∞ is an invariant
under the action G̃, and is a linear combination of (X1X2)4 and (X4

1 +X4
2 )2. Deduce that

the ring of invariants RG̃ is a polynomial ring on two generators (to be specified).
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