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1. Express Σi 6=jX
3
iXj as a polynomial in the elementary symmetric polynomials.

2. Let L = K(X1, X2, . . . , Xn) be the field of rational functions in n variables over a field
K and let M = K(s1, s2, . . . , sn), where the si are the elementary symmetric polynomials
in L. Let α = X1X2 . . . Xr for some r ≤ n. Calculate [M(α) : M ] and find the Galois
group Gal(L/M(α)) as an explicit subgroup of Sn.

3. Let L = K(X1, X2, X3, X4) be the field of rational functions in four variables over a
field K and let M = K(s1, s2, s3, s4). Let G be the dihedral subgroup of S4 generated by
the permutations σ1 = (1234) and σ2 = (13). Find the fixed field of G in the form M(β)
for some explicit β ∈ L.

4. Find the Galois group of the polynomial X4 +X3 + 1 over the finite fields F2, F3, F4.

5. Give an example of a field K of characteristic p > 0, and α and β of the same degree
over K so that K(α) is not isomorphic to K(β). Does such an example exist if K is a
finite field? Justify your answer.

6. Find the Galois groups of X5 − 15X + 21 and X4 +X + 1 over Q

7. Let K = Q(ζn) be the cyclotomic field with ζn = e2πi/n. Show that under the
isomorphism Gal(K/Q) ' (Z/nZ)∗, complex conjugation is identified with the residue
class of −1 (mod n). Deduce that if n ≥ 3, then [K : K ∩ R] = 2 and show that
K ∩R = Q(ζn + ζ−1n ) = Q(cos 2π/n). For which integers n is it possible to construct a
regular n-gon by ruler and compasses? (You may assume the results from Question 17.)

8. Find all four subfields of Q(e2πi/7). Find the quadratic subfields of Q(e2πi/15).

9. If p is any odd prime, show that Q(e2πi/p) has a unique subfield of degree 2 over Q.
Let F denote the cyclotomic polynomial Φp, and ζ a primitive pth root of unity, show that
F ′(ζ) = pζp−1/(ζ − 1). Prove that the norm NK/Q(F ′(ζ)) = pp−2, and deduce that the

unique quadratic subfield of Q(e2πi/p) is Q(
√
k), where k = (−1)(p−1)/2p.

10. Let p be an odd prime. By considering the Frobenius automorphism on the splitting
field of X2 + 1 over Fp, show that −1 is a quadratic residue mod p iff p ≡ 1 mod 4. If ζ a
root of X4 + 1, show that (ζ + ζ−1)2 = 2. Hence show that 2 is a quadratic residue mod
p iff p ≡ ±1 mod 8.

11. Factorize X9 −X over F3, and X16 −X over both F2 and (harder) F4 = F2(α).

12. Compute the Galois group of X5 − 5 over Q.

13. How many roots does X5 + 27X + 16 have over Q, over F3, and over F7? Show that
it is irreducible over Q and find its Galois group.

14. By showing that 2 cos (π/16) =
√

(2 +
√

2), provide another proof for the last part of
Question 12 on Example Sheet 2. Show moreover that Q(

√
(2 +

√
(2 +

√
2))) is a Galois

extension of Q and find its Galois group.
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15. Let Fq be the finite field of prime power order q = pr. We denote by an(q) the number
of irreducible monic polynomials of degree n in Fq[X].

(a) Show that an irreducible polynomial f ∈ Fq[X] of degree m divides Xqn − X if
and only if m divides n.

(b) Show that Xqn −X is the product of all irreducible monic polynomials in Fq[X]
of degree dividing n.

(c) Deduce that ∑
d|n

d ad(q) = qn.

(d) Use this to calculate the number of irreducible polynomials of degree 6 over F2.

(e) If you know about the Möbius function µ(n), then use the Möbius inversion formula
to show that

nan(q) =
∑
d|n

µ(n/d)qd.

16. Let Φn ∈ Z[X] denote the nth cyclotomic polynomial. Show that:

(i) If n is odd then Φ2n(X) = Φn(−X).

(ii) If p is a prime dividing n then Φnp(X) = Φn(Xp).

(iii) If p and q are distinct primes then the nonzero coefficients of Φpq are alternately
+1 and −1. [Hint: First show that if 1/(1−Xp)(1−Xq) is expanded as a power series in
X, then the coefficients of Xm with m < pq are either 0 or 1.]

(iv) If n is not divisible by at least three distinct odd primes then the coefficients of
Φn are −1, 0 or 1.

17. In this question we determine the structure of the groups (Z/mZ)∗.

(i) Let p be an odd prime. Show that for every n ≥ 2, (1 + p)p
n−2 ≡ 1 + pn−1

(mod pn). Deduce that 1 + p has order pn−1 in (Z/pnZ)∗.

(ii) If b ∈ Z with (p, b) = 1 and b has order p − 1 in (Z/pZ)∗ and n ≥ 1, show that
bp

n−1

has order p− 1 in (Z/pnZ)∗. Deduce that for n ≥ 1 and p an odd prime, (Z/pnZ)∗

is cyclic.

(iii) Show that for every n ≥ 3, 52
n−3 ≡ 1 + 2n−1 (mod 2n). Deduce that (Z/2nZ)∗

is generated by 5 and −1, and is isomorphic to Z/2n−2Z× Z/2Z, for any n ≥ 2.

(iv) Use the Chinese Remainder Theorem to deduce the structure of (Z/mZ)∗ in
general.

(v) ∗Dirichlet’s theorem on primes in arithmetic progressions states that if a and b are
coprime positive integers, then the set {an + b | n ∈ N} contains infinitely many primes.
Use this, the structure theorem for finite abelian groups, and part (iv) to show that every
finite abelian group is isomorphic to a quotient of (Z/mZ)∗ for suitable m. Deduce that
every finite abelian group is the Galois group of some Galois extension K/Q. Find an
explicit x for which Q(x)/Q is abelian with Galois group Z/23Z.

2


