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1. (i) Let K be a field of characteristic p > 0 and let α be algebraic over K. Show that
α is inseparable over K if and only if K(α) is not equal to K(αp), and that if this is the
case then p divides |K(α) : K|. Deduce that if K ⊆ L is any finite inseparable extension
of fields of characteristic p then p divides |L : K|.

2. (i) Let K ⊆ L be a finite field extension. Show that there is a unique intermediate field
K ⊆ F ⊆ L such that K ⊆ F is separable but F ⊆ L is purely inseparable, i.e. no element
α ∈ L \ F is separable over F . (F is called the separable closure of K in L.)

(ii) Given a purely inseparable finite extension of characteristic p fields F ⊂ L and α ∈ L,
show that there exists an integer r ≥ 0 such that αpr ∈ F . Deduce that if E is any
extension of F , then there is at most one F -homomorphism of L into E.

3. Let K = Fp(X,Y ) be the field of rational functions in two variables over the finite field
Fp (that is, the field of fractions of Fp[X,Y ]), and let k denote the subfield Fp(Xp, Y p).
For any g ∈ K, show that gp ∈ k, and hence deduce that the extension K/k is not simple.

4. ∗Suppose K,L are fields and σ1, . . . , σm are distinct embedding of K into L. Prove that
there do not exist elements λ1, . . . , λm of L (not all zero) such that

λ1σ1(x) + . . .+ λmσm(x) = 0

for all x ∈ K.
[Hint : If there were a non-trivial such relation between the σi with r > 1 non-zero λi,
show that there would also be one with s non-zero λi, for some 0 < s < r.]

5. If K/k is a finite separable field extension of degree n, we consider a field extension
L/k for which there are precisely n embeddings σi : K ↪→ L extending k ↪→ L (such an
extension L/k exists by Theorem 3.6). Regarding k as a subfield of L, prove (cf. argument
for Proposition 3.9) that for any α ∈ K, we have

n∏
i=1

(X − σi(α)) = fr,

where r = [K : k(α)] and f is the minimal polynomial of α over k. Deduce that

TrK/k(α) =

n∑
i=1

σi(α) and NK/k(α) =

n∏
i=1

σi(α).

Using the previous question, deduce that the linear map TrK/k : K → k is surjective.

6. For any finite group G, show that one can write down a Galois extension K/k, for
appropriate fields K and k, such that Gal(K/k) = G.

7. Let K = k(X) be the field of rational functions over k. We define maps σ and τ
by τ(h(X)) = h(1/X) and σ(h(X)) = h(1 − 1/X) for h ∈ k(X). Show that these are k-

automorphisms of K and that they determine an action of S3 on K. If h(X) = (X2−X+1)3

X2(X−1)2 ,

show that h is fixed. Using Artin’s Theorem, show that the fixed field is k(h).
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8. Show that K = Q(
√

2, i) is a Galois extension of Q and find its Galois group G. Write
down the lattice of subgroups of G and the corresponding lattice of intermediate fields
Q ⊆ L ⊆ K.

9. Suppose that G is a transitive subgroup of Sp, where p is a prime, and that G con-
tains a transposition. Prove that G contains all transpositions and hence G = Sp.
[Hint: Define an equivalence relation ∼ on {1, 2, . . . , p} by x ∼ y iff x = y or (x, y) ∈ G.]

If f ∈ Q[X] irreducible of degree p, with p a prime, and f has precisely two complex
roots, prove that the Galois group is Sp. Considering f of the form Xp +mp2(X− 1)(X−
2) . . . (X − (p − 2)) − p for suitably large m, produce an example of f irreducible with
Galois group Sp.

10. Show that the cubics X3 − 3X + c are irreducible over Q for c = 1 and 3; find their
Galois groups. What happens when c = 2?

11. Show that the extension Q(21/4, i) over Q is Galois and that the Galois group has
order 8. Find an element σ of order 4 in G and an element τ of order 2 which does not
commute with σ. Deduce that G ∼= D8.

Write down the lattice of subgroups for D8 (Warning: Most students I’ve supervised
in the past have even got this wrong). Deduce the lattice of intermediate fields L with
Q ⊆ L ⊆ Q(21/4, i) — here each L should be explicitly described by generators, e.g.
L = Q(21/2, i) or L = Q(21/4(i+ 1)). For which of the fields L you find is L/Q Galois?

12. Let α =
√

(2 +
√

2) ∈ R; show that the roots of its minimal polynomial over Q are
±α and ±

√
(2 −

√
2) = ±

√
2/α. Deduce that Q(α) is a Galois extension of Q. ∗Find its

Galois group.

13. If k ⊆ K is a finite inseparable extension of fields, show that TrK/k : K → k is the
zero map (use Q1 and the transitivity of the trace map, Lemma 3.10).

14. ∗Let p1, p2, . . . , pn denote distinct primes, and let L = Q(
√
p
1
,
√
p
2
, . . . ,

√
p
n
). Show

that L/Q is Galois of degree 2n with Galois group (C2)n. [Hint: Induction on n.]

15. Suppose that K/k is a Galois extension with Galois group {σ1, . . . , σn}. Show that
{β1, . . . , βn} is a basis for K as a k-vector space if and only if det(σi(βj)) 6= 0.

16. Suppose that K = k(X) is the field of rational functions over a field k with char(k) =
p > 0. Let 1 < n < p and σ the k-automorphism of K which sends X to nX. Determine
the fixed field of this action.

17. If h = f/g is a non-constant rational function in k(X) where f , g are coprime poly-
nomials, show that the polynomial g(Z) − hf(Z) ∈ k(h)[Z] is irreducible. Hence deduce
that [k(X) : k(h)] = max{deg(f),deg(g)}. [Hint: Gauss’s Lemma.]

If σ is a k-automorphism of K = k(X), show that there exist a, b, c, d ∈ k with ad 6= bc
such that σ(X) = (aX + b)/(cX + d), and conversely that such elements do determine a
k-automorphism of K.
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