II Galois Theory Michaelmas Term 2017

EXAMPLE SHEET 4

1. Prove that the Galois group G of the polynomial $t^6 + 3$ over the rationals is of order 6. By explicitly describing the elements of G, show that they have orders 1,2 and 3. Hence deduce that G is isomorphic to S_3 . Why does it follow that $t^6 + 3$ is reducible over the finite field of p elements of all primes p?

2. Let f(t) be an irreducible cubic polynomial over a field K of characteristic $\neq 2$. Let Δ be a square root of the discriminant of f(t). Show that f(t) remains irreducible over $K(\Delta)$.

3. Let f(t) be an irreducible separable quartic and g(t) be its resolvent cubic. Show that the discriminant of f(t) and g(t) are the same.

4. Find the Galois group of the polynomial $f(t) = t^4 + t + 1$ over the fields of two and three elements. Hence or otherwise determine the Galois group of f(T) over the rationals.

5. Determine the Galois group of the polynomial $f(t0 = t^5 - 15t - 3 \text{ over the rationals.})$

6. Show the polynomial $f(t) = t^5 + 27t + 16$ has no rational roots. Show that the splitting field over the field of three elements is an extension of degree 4. Hence deduce that f(t) is irreducible over the rationals. Prove that f(t) has precisely two (non-multiple) roots over the finite filed of 7 elements. Find the Galois groups of f(t) over the rationals. 7. Show that the Galois groups of $f(t) = t^5 + 20t^2 - 2$ over the rationals is S_5 . Now let K be a finite extension of the rationals of primed degree at least 7. Show that the Galois group of f(t) over K is also S_5 .

8. Let K be the rationals. Show that $K(\sqrt{2+\sqrt{2+\sqrt{2}}})$ is a Galois extension of K and find its Galois group.

9. (i) Show the Galois group of $f(t) = t^5 - 4t + 2$ over the rationals K is S_5 , and determine the Galois group over K(i).

(ii) Find the Galois group of $f(t) = t^4 - 4t + 2$ over the rationals K and over K(i).

10. Let G be the group of invertible $n \times n$ upper triangular matrices with entries in a finite field F. Show that G is soluble.

11. Let K_1 and K_2 ne algebraically closed fields of the same characteristic. Show that either K_1 is isomorphic to a subfield of K_2 , or K_2 is isomorphic to a subfield of K_1 .

12. Express $\sum_{i \neq j} X_i^3 X_j$ as a polynomial in the elementary symmetric polynomials.

13. Let $L = K(X_1, X_2, X_3, X_4)$ be the field of rational functions in four variables over a field K and let $M = K(s_1, s_2, s_3, s_4)$ where s_1, s_2, s_3, s_4 are the elementary symmetric polynomials in L. Show that $X_1X_3 + X_2X_4$ has a cubic minimal polynomial over M. Let G be the dihedral subgroup of S_4 generated by the permutations $\sigma_1 = (1234)$ and $\sigma_2 = (13)$. Show the the fixed field of G is $M(X_1X_3 + X_2X_4)$. Find the fixed field of the subgroup H generated by σ_1^2 and σ_2 .

14. Show that for any n > 1 the polynomial $t^n + t + 3$ is irreducible over the rationals. Determine its Galois group for $n \le 5$.

brookes@dpmms.cam.ac.uk