II Galois Theory Michaelmas Term 2016

EXAMPLE SHEET 1

1. Let $K \leq L$ be a field extension of degree 2. Show that if the characteristic of $K \neq 2$ then $L = K(\alpha)$ for some $\alpha \in L$ with $\alpha^2 \in K$.

Show that if the characteristic is 2 then either $L = K(\alpha)$ for some α with $\alpha^2 \in K$, or $L = K(\alpha)$ for some α with $\alpha^2 + \alpha \in K$.

2. (i) Le $K \leq L$ be a finite extension of prime degree. Show that there is no intermediate extension K < M < L. (ii) Let α be such that $|K(\alpha) : K|$ is odd. Show that $K(\alpha) = K(\alpha^2)$ 3. Find the minimal polynomial over the rationals of the following complex numbers: $(i\sqrt{3}-1)/2, i + \sqrt{2}, \sin(2\pi/5).$

4. Let $f(t) = t^3 + t^2 - 2t + 1$. Show that f(t) is irreducible as a rational polynomial. Suppose that f(t) is the minimal polynomial of α over the rationals. and let $\beta = \alpha^4$. Find rationals a, b, c such that $\beta = a + b\alpha + c\alpha^2$. Do the same for $\beta = (1 - \alpha^2)^{-1}$.

5. Let $K \leq L$ be a finite extension and $f(t) \in K[t]$ be an irreducible polynomial of degree d > 1. Show that if d and |L:K| are coprime then f(t) has no roots in L.

6. (i) Let K be a field and $Y = p(X)/q(X) \in K(X)$ be a non-constant rational function. Find a polynomial in variable t with coefficients in K(Y) which has X as a root. (ii) Let L be a subfield of K(X) containing K. Show that either K(X) is a finite extension of L or L = K. Deduce that the only elements of K(X) which are algebraic over K are constants. 7. Show that a regular 7-gon is not constructible by ruler and compasses.

8. Show that if f(t) is an irreducible polynomial of degree 2 over the field K, and $L = K(\alpha)$ where $f(\alpha) = 0$, then L is a splitting field for f(t) over K.

9. Find a splitting field K for each of the following rational polynomials, and calculate the degree of K over the rationals: $t^4 - 5t^2 + 6$, $t^8 - 1$, $t^8 - 2$, $t^4 + 4$.

10. Show that if L is a splitting field for a polynomial in K[t] of degree n, then $|L:K| \leq n!$.

brookes@dpmms.cam.ac.uk