Part II Galois theory (2014–2015) Example Sheet 4 c.birkar@dpmms.cam.ac.uk

(1) Let h = f/g be a non-constant rational function in K(t) where f, g are coprime polynomials. Show that the polynomial f(z) - hg(z) is irreducible as an element of K(h)[z]. Hence deduce that $[K(t) : K(h)] = \max\{\deg(f), \deg(g)\}$. (Hint: Gauss's Lemma.)

If $\varphi \in \operatorname{Aut}_K(L)$ where L = K(t), show that there exist $a, b, c, d \in K$ with $ad \neq bc$ such that $\varphi(t) = (at+b)/(ct+d)$, and conversely that such elements of K do determine elements of $\operatorname{Aut}_K(L)$.

- (2) Suppose $K \subseteq L$ is a Galois extension with $G = \operatorname{Gal}(L/K)$ and let $\alpha \in L$. Show that $L = K(\alpha)$ if and only if the images of α under the elements of G are distinct.
- (3) Suppose that $K \subseteq L$ is a Galois extension with Galois group $\operatorname{Gal}(L/K) = \{\varphi_1, \ldots, \varphi_n\}$. Show that $\{\beta_1, \ldots, \beta_n\}$ is a basis for L as a K-vector space if and only if $\operatorname{det}[\varphi_i(\beta_j)]_{1 \leq i,j \leq n}$ is not zero.
- (4) Express $\sum_{i \neq j} t_i^3 t_j \in K(t_1, \ldots, t_n)$ as a polynomial in the elementary symmetric polynomials.
- (5) Let L = K(t). We define maps φ and ψ by $\varphi(h(t)) = h(1/t)$ and $\psi(h(t)) = h(1-1/t)$ for $h \in K(t)$. Show that $\varphi, \psi \in \operatorname{Aut}_K(L)$ and that they determine an action of S_3 on L. Show that the corresponding fixed field is just K(g), where $g(t) = \frac{(t^2 t + 1)^3}{t^2(t-1)^2}$.
- (6) Let L be the 15-th cyclotomic extension of \mathbb{Q} . Find all the degree two extensions of \mathbb{Q} contained in L.
- (7) Reduction mod p. Let $f \in \mathbb{Z}[t]$ with no repeated roots and write $f = t^n a_1 t^{n-1} + a_2 t^{n-2} \dots + (-1)^n a_n$. Let p be a prime number and assume \bar{f} , the image of f in $\mathbb{F}_p[t]$, also has no repeated roots. In several steps we show $\bar{G} = \operatorname{Gal}(\bar{E}/\mathbb{F}_p)$ embeds into $G = \operatorname{Gal}(E/\mathbb{Q})$ where \bar{E} (resp. E) is the splitting field of \bar{f} (resp. f) over \mathbb{F}_p (resp. \mathbb{Q}).

Let x_1, \ldots, x_n be variables and e_1, \ldots, e_n the symmetric polynomials in the x_i . Let $A = \mathbb{Z}[e_1, \ldots, e_n], B = \mathbb{Z}[x_1, \ldots, x_n], L$ = fraction field of A, and F = fraction field of B. For $\sigma \in S_n$ define $R_{\sigma} = t - x_{\sigma(1)}u_1 - \cdots - x_{\sigma(n)}u_n$ where the u_i are a new set of variables. Put $R = \prod_{\sigma \in S_n} R_{\sigma}$.

(i) Considering R as an element of $B[u_1, \ldots, u_n, t]$, show that its coefficients belong to $B \cap L$. For the ambitious: show that in fact these coefficients belong to A (we will use this fact in the steps below).

(ii) Let $\operatorname{Root}_f(E) = \{\alpha_1, \ldots, \alpha_n\}$ and define a ring homomorphism $\theta \colon B \to E$ by $\theta(x_i) = \alpha_i$. Show that θ restricts to a homomorphism $A \to \mathbb{Z}$ sending e_i to a_i . Denoting the induced homomorphism $B[u_1, \ldots, u_n, t] \to E[u_1, \ldots, u_n, t]$ again by θ , deduce that $\theta(R) \in \mathbb{Z}[u_1, \ldots, u_n, t]$.

(iii) Let P be an irreducible factor of $\theta(R)$ in $\mathbb{Q}[u_1, \ldots, u_n, t]$. Assume $\theta(R_{\sigma})|P$ in $E[u_1, \ldots, u_n, t]$ for some σ . Show that $P = \theta(R_{G\sigma}) := \prod_{\tau \in G} \theta(R_{\tau\sigma})$ where we consider $G = \operatorname{Gal}(L/\mathbb{Q}) \leq S_n$. (So the irreducible factors of $\theta(R)$ correspond to the cosets of G in S_n .)

(iv) Reprove (ii) and (iii) by replacing f with \overline{f} , that is, by considering $\operatorname{Root}_{\overline{f}}(\overline{E})$ and defining a homomorphism $\overline{\theta} \colon B \to \overline{E}$ which restricts to a homomorphism $A \to \mathbb{F}_p$, and by considering the irreducible factors of $\overline{\theta}(R)$, etc. Finally deduce that \overline{G} can be identified with a subgroup of G.

- (8) Show that $t^4 + 1$ is reducible over every finite field \mathbb{F}_q . (Hint: use the previous problem and consider the Frobenius) Let p be an odd prime. By considering the splitting field of $t^2 + 1$ over \mathbb{F}_p , show that -1 is a quadratic residue mod p iff $p \equiv 1 \mod 4$. If ζ a root of $t^4 + 1$, show that $(\zeta + \zeta^{-1})^2 = 2$. Hence show that 2 is a quadratic residue mod p iff $p \equiv \pm 1 \mod 8$.
- (9) Show that the minimal polynomial of $\sqrt{3} + \sqrt{5}$ over \mathbb{Q} is reducible modulo p for all primes p.
- (10) Let L be the splitting field of $t^3 3t + c$ over \mathbb{Q} . Find the Galois group $\operatorname{Gal}(L/\mathbb{Q})$ when c = 1 and 3. What happens when c = 2?
- (11) Consider the polynomial $f = t^3 + 3t^2 1$ over \mathbb{Q} . Show that there exist $a \in \mathbb{Q}$ and $\alpha \in \mathbb{Q}(\sqrt{a})$ such that f splits over $L = \mathbb{Q}(\sqrt{a})(\sqrt[3]{\alpha})$.
- (12) Show that $\mathbb{Q}(\sqrt{2} + \sqrt{2})$ is a Galois extension of \mathbb{Q} and find its Galois group. Optional: show that $\mathbb{Q}(\sqrt{2} + \sqrt{2} + \sqrt{2}))$ is a Galois extension of \mathbb{Q} , and find its Galois group.
- (13) Show that $t^4 + t^2 + t + 1$ is irreducible over \mathbb{Q} , and find the Galois group of its splitting field over \mathbb{Q} .
- (14) Let $f \in K[X]$ be an irreducible separable quartic and L its splitting field over K. Consider the Galois group $\operatorname{Gal}(L/K)$ as a subgroup $G \leq S_4$. Let $V = \{1, (12)(34), (13)(24), (14)(23)\}$. Show that $G \cap V$ is either V or a subgroup of index 2 in V. In both cases, determine the various possibilities for G.
- (15) Let L be the splitting field of $t^5 2$ over \mathbb{Q} . Investigate the Galois group $\operatorname{Gal}(L/\mathbb{Q})$.
- (16) Suppose p is an odd prime, $\mu = \exp(2\pi i/p)$, and let $L = \mathbb{Q}(\mu)$. If F denotes the corresponding cyclotomic polynomial Φ_p , show that $F'(\mu) = p\mu^{p-1}/(\mu-1)$. Prove that the norm $N_{L/\mathbb{Q}}(F'(\mu)) = p^{p-2}$.
- (17) Optional: Let p_1, p_2, \ldots, p_n denote the first *n* primes, and let $L = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \ldots, \sqrt{p_n})$. Show that this is a Galois extension of degree 2^n with Galois group isomorphic to $(\mathbb{Z}/\langle 2 \rangle)^n$.