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Note: you can use the Eisenstein criterion for irreducibility of polynomials over Q
if need be.

(1) An unsolved problem asks whether for an arbitrary finite group G there exists
a Galois extension Q ⊆ L whose Galois group is isomorphic to G. We want
to show that this holds for abelian groups.

(i) Let p be an odd prime. Show that for every n ≥ 2, (1+p)p
n−2 ≡ 1+pn−1

(mod pn). Deduce that 1 + p has order pn−1 in (Z/〈pn〉)∗.
(ii) If b ∈ Z with (p, b) = 1 and b has order p − 1 in (Z/〈p〉)∗ and n ≥ 1,

show that bp
n−1

has order p−1 in (Z/〈pn〉)∗. Deduce that for n ≥ 1, (Z/〈pn〉)∗
is cyclic.

(iii) Show that for every n ≥ 3, we have 52
n−3 ≡ 1+2n−1 (mod 2n). Deduce

that (Z/〈2n〉)∗ is generated by the classes of 5 and −1, and is isomorphic to
(Z/〈2n−2〉)× (Z/〈2〉) for any n ≥ 2.

(iv) Use the Chinese Remainder Theorem to deduce the structure of (Z/〈m〉)∗
in general.

(v) Dirichlet’s theorem on primes in arithmetic progressions states that if
a and b are coprime positive integers, then the set {an + b|n ∈ N} contains
infinitely many primes. Use this, the structure theorem for finite abelian
groups, and part (iv) to show that every finite abelian group is isomorphic to
a quotient of (Z/〈m〉)∗ for suitable m. Deduce that every finite abelian group
is the Galois group of some Galois extension Q ⊆ L.

(2) Let K be a field containing an n-th primitive root of unity for some n > 1.
Let a, b ∈ K such that the polynomials f(t) = tn − a and g(t) = tn − b are
irreducible. Show that f and g have the same splitting field if and only if
b = cnar for some c ∈ K and r ∈ N with gcd(r, n) = 1.

(3) Let p be a prime, K be a field with char K 6= p, and L the p-th cyclotomic
extension of K. For a ∈ K, show that tp− a is irreducible over K if and only
if it is irreducible over L. Is the result true if p is not assumed to be prime?

(4) Let K be a field containing an n-th primitive root of unity. Show that tn − a
is reducible over K if and only if a is a d-th power in K for some divisor d > 1
of n. Show that this need not be true if K does not contain an n-th primitive
root of unity.

(5) Let K ⊆ L be a field extension of degree 2 and assume char K 6= 2. Show
that the extension is a Kummer extension.

(6) Let K be a field of char K = 0 and L the n-th cyclotomic extension of K.
Show that there is a sequence of Kummer extensions E0 = K ⊆ E1 ⊆ · · · ⊆ Er

such that L is contained in Er. (Hint: consider F = splitting field of



(tn − 1)(tn−1 − 1) · · · (t− 1) and apply induction on n)

(7) Let F,E be intermediate fields of a finite separable extension K ⊆ L. Show
that if K ⊆ F and K ⊆ E are solvable extensions, then K ⊆ FE is also solv-
able. Here FE is the composite field of F and E, i.e. the intermediate field
generated by the elements of F,E (that is, the set of all finite sums

∑
xiyi

for xi ∈ F , yi ∈ E).

(8) Write cos(2π/17) explicitly in terms of radicals.

(9) Let K be a field, f ∈ K[t] be separable, and L be the splitting field of f over
K. Show that f is irreducible iff Gal(L/K) acts transitively on Rootf (L)
(that is, for any two roots α, β there is ϕ ∈ Gal(L/K) such that ϕ(α) = β).

(10) Let f be an irreducible cubic polynomial over a field K with char K 6= 2,
and let α be a square root of the discriminant of f . Show that f remains
irreducible over K(α).

(11) Let f be an irreducible quartic polynomial over a field K with char K 6= 2 and
let L be its splitting field over K. Assume that the Galois group of K ⊆ L is
isomorphic to A4. Show that L can be written in the form F (

√
a,
√
b) where

K ⊆ F is a Galois extension of degree 3 and a, b ∈ F .

(12) Consider the quartic f = t4 − 4t + 2 and let L be its splitting field over
Q(
√
−1). Find the Galois group Gal(L/Q(

√
−1).

(13) Ruler-compass constructions. We will apply Galois theory to an ancient ques-
tion which asks whether the side of a cube of volume 2 can be constructed by
ruler-compass constructions. Consider the Euclidean plane R2. For a finite
subset S ⊆ R2 we have two constructions. First we have ruler: given P,Q ∈ S,
we can join them by a straight line. Second we have compass: given points
P,Q,Q′ ∈ S, we can draw a circle with centre P and radius equal to QQ′. We
say that a point R in the plane is 1-step constructible from S if R is a point
of intersection of 2 distinct curves (lines or circles) obtained from S by either
of the above two constructions. A point R is constructible from S if there
exist points R1, . . . , Rn = R such that R1 is 1-step constructible from S, and
for each 1 ≤ i ≤ n− 1, Ri+1 is 1-step constructible from S ∪ {R1, . . . , Ri}. A
set T constructible from S is similarly defined.

We define the field Q(S) to be the field generated over Q by the coordinates
of all the points of S.

(i) Show that if R is 1-step constructible from S then [Q(S∪{R}) : Q(S)] =
1 or 2.

(ii) Show that if a set T is constructible from S then [Q(T ) : Q(S)] is a
power of 2.

(iii) Assume Q(S) = Q. Show that (0, 3
√

2) is not constructible from S.
(This answers the ancient question negatively)


