Part II Galois theory (2014–2015) Example Sheet 3 c.birkar@dpmms.cam.ac.uk

Note: you can use the Eisenstein criterion for irreducibility of polynomials over \mathbb{Q} if need be.

(1) An unsolved problem asks whether for an arbitrary finite group G there exists a Galois extension $\mathbb{Q} \subseteq L$ whose Galois group is isomorphic to G. We want to show that this holds for abelian groups.

(i) Let p be an odd prime. Show that for every $n \ge 2$, $(1+p)^{p^{n-2}} \equiv 1+p^{n-1} \pmod{p^n}$. Deduce that 1+p has order p^{n-1} in $(\mathbb{Z}/\langle p^n \rangle)^*$.

(ii) If $b \in \mathbb{Z}$ with (p, b) = 1 and b has order p - 1 in $(\mathbb{Z}/\langle p \rangle)^*$ and $n \ge 1$, show that $b^{p^{n-1}}$ has order p-1 in $(\mathbb{Z}/\langle p^n \rangle)^*$. Deduce that for $n \ge 1$, $(\mathbb{Z}/\langle p^n \rangle)^*$ is cyclic.

(iii) Show that for every $n \ge 3$, we have $5^{2^{n-3}} \equiv 1+2^{n-1} \pmod{2^n}$. Deduce that $(\mathbb{Z}/\langle 2^n \rangle)^*$ is generated by the classes of 5 and -1, and is isomorphic to $(\mathbb{Z}/\langle 2^{n-2} \rangle) \times (\mathbb{Z}/\langle 2 \rangle)$ for any $n \ge 2$.

(iv) Use the Chinese Remainder Theorem to deduce the structure of $(\mathbb{Z}/\langle m \rangle)^*$ in general.

(v) Dirichlet's theorem on primes in arithmetic progressions states that if a and b are coprime positive integers, then the set $\{an + b | n \in \mathbb{N}\}$ contains infinitely many primes. Use this, the structure theorem for finite abelian groups, and part (iv) to show that every finite abelian group is isomorphic to a quotient of $(\mathbb{Z}/\langle m \rangle)^*$ for suitable m. Deduce that every finite abelian group is the Galois group of some Galois extension $\mathbb{Q} \subseteq L$.

- (2) Let K be a field containing an n-th primitive root of unity for some n > 1. Let $a, b \in K$ such that the polynomials $f(t) = t^n - a$ and $g(t) = t^n - b$ are irreducible. Show that f and g have the same splitting field if and only if $b = c^n a^r$ for some $c \in K$ and $r \in \mathbb{N}$ with gcd(r, n) = 1.
- (3) Let p be a prime, K be a field with char $K \neq p$, and L the p-th cyclotomic extension of K. For $a \in K$, show that $t^p a$ is irreducible over K if and only if it is irreducible over L. Is the result true if p is not assumed to be prime?
- (4) Let K be a field containing an n-th primitive root of unity. Show that $t^n a$ is reducible over K if and only if a is a d-th power in K for some divisor d > 1 of n. Show that this need not be true if K does not contain an n-th primitive root of unity.
- (5) Let $K \subseteq L$ be a field extension of degree 2 and assume char $K \neq 2$. Show that the extension is a Kummer extension.
- (6) Let K be a field of char K = 0 and L the *n*-th cyclotomic extension of K. Show that there is a sequence of Kummer extensions $E_0 = K \subseteq E_1 \subseteq \cdots \subseteq E_r$ such that L is contained in E_r . (Hint: consider F = splitting field of

 $(t^n - 1)(t^{n-1} - 1) \cdots (t - 1)$ and apply induction on n)

- (7) Let F, E be intermediate fields of a finite separable extension $K \subseteq L$. Show that if $K \subseteq F$ and $K \subseteq E$ are solvable extensions, then $K \subseteq FE$ is also solvable. Here FE is the composite field of F and E, i.e. the intermediate field generated by the elements of F, E (that is, the set of all finite sums $\sum x_i y_i$ for $x_i \in F, y_i \in E$).
- (8) Write $\cos(2\pi/17)$ explicitly in terms of radicals.
- (9) Let K be a field, $f \in K[t]$ be separable, and L be the splitting field of f over K. Show that f is irreducible iff $\operatorname{Gal}(L/K)$ acts transitively on $\operatorname{Root}_f(L)$ (that is, for any two roots α, β there is $\varphi \in \operatorname{Gal}(L/K)$ such that $\varphi(\alpha) = \beta$).
- (10) Let f be an irreducible cubic polynomial over a field K with char $K \neq 2$, and let α be a square root of the discriminant of f. Show that f remains irreducible over $K(\alpha)$.
- (11) Let f be an irreducible quartic polynomial over a field K with char $K \neq 2$ and let L be its splitting field over K. Assume that the Galois group of $K \subseteq L$ is isomorphic to A_4 . Show that L can be written in the form $F(\sqrt{a}, \sqrt{b})$ where $K \subseteq F$ is a Galois extension of degree 3 and $a, b \in F$.
- (12) Consider the quartic $f = t^4 4t + 2$ and let L be its splitting field over $\mathbb{Q}(\sqrt{-1})$. Find the Galois group $\operatorname{Gal}(L/\mathbb{Q}(\sqrt{-1}))$.
- (13) Ruler-compass constructions. We will apply Galois theory to an ancient question which asks whether the side of a cube of volume 2 can be constructed by ruler-compass constructions. Consider the Euclidean plane \mathbb{R}^2 . For a finite subset $S \subseteq \mathbb{R}^2$ we have two constructions. First we have ruler: given $P, Q \in S$, we can join them by a straight line. Second we have compass: given points $P, Q, Q' \in S$, we can draw a circle with centre P and radius equal to QQ'. We say that a point R in the plane is 1-step constructible from S if R is a point of intersection of 2 distinct curves (lines or circles) obtained from S by either of the above two constructions. A point R is constructible from S, and for each $1 \leq i \leq n 1$, R_{i+1} is 1-step constructible from $S \cup \{R_1, \ldots, R_i\}$. A set T constructible from S is similarly defined.

We define the field $\mathbb{Q}(S)$ to be the field generated over \mathbb{Q} by the coordinates of all the points of S.

(i) Show that if R is 1-step constructible from S then $[\mathbb{Q}(S \cup \{R\}) : \mathbb{Q}(S)] = 1$ or 2.

(ii) Show that if a set T is constructible from S then $[\mathbb{Q}(T) : \mathbb{Q}(S)]$ is a power of 2.

(iii) Assume $\mathbb{Q}(S) = \mathbb{Q}$. Show that $(0, \sqrt[3]{2})$ is not constructible from S. (This answers the ancient question negatively)