Part II Galois theory (2014–2015) Example Sheet 2 c.birkar@dpmms.cam.ac.uk

- (1) Let K be a finite field. By considering the multiplicative group K^{\times} , or otherwise, write down a non-constant polynomial over K which does not have a root in K. Deduce that K cannot be algebraically closed.
- (2) Let K be field and \overline{K} its algebraic closure. Assume $K \subseteq L$ is a finite field extension. Show that L is K-isomorphic to some subfield of \overline{K} .
- (3) Let K_1 and K_2 be algebraically closed fields of the same characteristic. Show that either K_1 is isomorphic to a subfield of K_2 or K_2 is isomorphic to a subfield of K_1 .
- (4) Find an example of a field extension $K \subseteq L$ which is normal but not separable.
- (5) Let $K \subseteq L$ be a field extension with [L:K] = 2. Show that the extension is normal.
- (6) Find finite field extensions $K \subseteq F \subseteq L$ such that $K \subseteq F$ and $F \subseteq L$ are normal but $K \subseteq L$ is not normal.
- (7) Let L be the splitting field of $t^3 2$ over \mathbb{Q} . Find a subgroup of $\operatorname{Gal}(L/\mathbb{Q})$ which is not a normal subgroup.
- (8) Let $K \subseteq L$ be a finite Galois extension, and F, M intermediate fields. What is the subgroup of $\operatorname{Gal}(L/K)$ corresponding to the subfield $F \cap M$? Show that if there is a K-isomorphism $F \to M$, then the subgroups $\operatorname{Gal}(L/F)$ and $\operatorname{Gal}(L/M)$ are conjugate in $\operatorname{Gal}(L/K)$.
- (9) Show that $\mathbb{Q} \subseteq L = \mathbb{Q}(\sqrt{2}, \sqrt{-1})$ is a Galois extension and determine its Galois group. Write down all the subgroups of $\operatorname{Gal}(L/\mathbb{Q})$ and the corresponding subfields of L.
- (10) Show that for any natural number n there exists a Galois extension $K \subseteq L$ with $\operatorname{Gal}(L/K)$ isomorphic to S_n , the symmetric group of degree n. Show that for any finite group G there exists a Galois extension whose Galois group is isomorphic to G. (Hint: to prove the first claim, consider the field $L = \mathbb{Q}(t_1, \ldots, t_n)$ of rational functions in t_1, \ldots, t_n , then consider an action of S_n on L, etc.)
- (11) Let L be the splitting field of $t^5 4t + 2$ over \mathbb{Q} . Show that $\mathbb{Q} \subseteq L$ is a Galois extension with Galois group isomorphic to S_5 .
- (12) Let L be the splitting field of $t^4 + t^3 + 1$ over a field K. Compute the Galois group $\operatorname{Gal}(L/K)$ for each of the following cases: $K = \mathbb{F}_2$, $K = \mathbb{F}_3$, and $K = \mathbb{F}_4$.

- (13) Let p be a prime number and $L = \mathbb{F}_p(t)$ be the field of rational functions in t. Let $a \in \mathbb{F}_p$ be a non-zero element, and let $\varphi \in \operatorname{Aut}_{\mathbb{F}_p}(L)$ be the automorphism determined by $\varphi(t) = at$. Determine the subgroup $G \leq \operatorname{Aut}_{\mathbb{F}_p}(L)$ generated by φ , and its fixed field L^G .
- (14) Show that there is at least one irreducible polynomial $f \in \mathbb{F}_5[t]$ with deg f = 17.
- (15) Compute $\Phi_{12} \in \mathbb{Z}[t]$, the 12-th cyclotomic polynomial.
- (16) Let $K \subseteq L$ be an extension of finite fields. Show that L is the n-th cyclotomic extension of K for some n.
- (17) Let L be the 7-th cyclotomic extension of \mathbb{Q} . Find all the intermediate fields $\mathbb{Q} \subseteq F \subseteq L$ and write each one as $\mathbb{Q}(\alpha)$ for some α . Which one of these intermediate fields is Galois over \mathbb{Q} ?
- (18) Let $\Phi_n \in \mathbb{Z}[t]$ denote the *n*-th cyclotomic polynomial. Show that:

(i) If n > 1 is odd, then $\Phi_{2n}(t) = \Phi_n(-t)$.

(ii) If p is a prime dividing n, then $\Phi_{np}(t) = \Phi_n(t^p)$.

(iii) If p and q are distinct primes, then the non-zero coefficients of Φ_{pq} are alternately +1 and -1. ([Hint: First show that if $1/(1-t^p)(1-t^q)$ is expanded as a power series in t, then the coefficients of t^m with m < pq are either 0 or 1.)

(iv) If n is not divisible by at least three distinct odd primes, then the coefficients of Φ_n are 1,0 or -1.

(v) Φ_{105} has at least one coefficient which is not 1,0 or -1.

(19) Let $\mu = \exp(2\pi i/n)$ where $i = \sqrt{-1}$, and let $L = \mathbb{Q}(\mu)$ be the *n*-th cyclotomic extension of \mathbb{Q} . Show that the isomorphism $\operatorname{Gal}(L/\mathbb{Q}) \to (\mathbb{Z}/\langle n \rangle)^{\times}$ sends the automorphism given by complex conjugation to the class of -1. Deduce that if $n \geq 3$, then $[L: L \cap \mathbb{R}] = 2$ and show that $L \cap \mathbb{R} = \mathbb{Q}(\mu + \mu^{-1}) = \mathbb{Q}(\cos 2\pi/n)$.