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(1) Let K be a finite field. By considering the multiplicative group K× , or oth-
erwise, write down a non-constant polynomial over K which does not have a
root in K. Deduce that K cannot be algebraically closed.

(2) Let K be field and K its algebraic closure. Assume K ⊆ L is a finite field
extension. Show that L is K-isomorphic to some subfield of K.

(3) Let K1 and K2 be algebraically closed fields of the same characteristic. Show
that either K1 is isomorphic to a subfield of K2 or K2 is isomorphic to a
subfield of K1.

(4) Find an example of a field extension K ⊆ L which is normal but not separable.

(5) Let K ⊆ L be a field extension with [L : K] = 2. Show that the extension is
normal.

(6) Find finite field extensions K ⊆ F ⊆ L such that K ⊆ F and F ⊆ L are
normal but K ⊆ L is not normal.

(7) Let L be the splitting field of t3 − 2 over Q. Find a subgroup of Gal(L/Q)
which is not a normal subgroup.

(8) Let K ⊆ L be a finite Galois extension, and F,M intermediate fields.
What is the subgroup of Gal(L/K) corresponding to the subfield F∩M? Show
that if there is a K-isomorphism F →M , then the subgroups Gal(L/F ) and
Gal(L/M) are conjugate in Gal(L/K).

(9) Show that Q ⊆ L = Q(
√

2,
√
−1) is a Galois extension and determine its Ga-

lois group. Write down all the subgroups of Gal(L/Q) and the corresponding
subfields of L.

(10) Show that for any natural number n there exists a Galois extension K ⊆ L
with Gal(L/K) isomorphic to Sn, the symmetric group of degree n. Show
that for any finite group G there exists a Galois extension whose Galois
group is isomorphic to G. (Hint: to prove the first claim, consider the field
L = Q(t1, . . . , tn) of rational functions in t1, . . . , tn, then consider an action
of Sn on L, etc.)

(11) Let L be the splitting field of t5− 4t+ 2 over Q. Show that Q ⊆ L is a Galois
extension with Galois group isomorphic to S5.

(12) Let L be the splitting field of t4 + t3 + 1 over a field K. Compute the Ga-
lois group Gal(L/K) for each of the following cases: K = F2, K = F3, and
K = F4.



(13) Let p be a prime number and L = Fp(t) be the field of rational functions in t.
Let a ∈ Fp be a non-zero element, and let ϕ ∈ AutFp(L) be the automorphism
determined by ϕ(t) = at. Determine the subgroup G ≤ AutFp(L) generated

by ϕ, and its fixed field LG.

(14) Show that there is at least one irreducible polynomial f ∈ F5[t] with deg f =
17.

(15) Compute Φ12 ∈ Z[t], the 12-th cyclotomic polynomial.

(16) Let K ⊆ L be an extension of finite fields. Show that L is the n-th cyclotomic
extension of K for some n.

(17) Let L be the 7-th cyclotomic extension of Q. Find all the intermediate fields
Q ⊆ F ⊆ L and write each one as Q(α) for some α. Which one of these
intermediate fields is Galois over Q?

(18) Let Φn ∈ Z[t] denote the n-th cyclotomic polynomial. Show that:

(i) If n > 1 is odd, then Φ2n(t) = Φn(−t).
(ii) If p is a prime dividing n, then Φnp(t) = Φn(tp).
(iii) If p and q are distinct primes, then the non-zero coefficients of Φpq

are alternately +1 and −1. ([Hint: First show that if 1/(1 − tp)(1 − tq) is
expanded as a power series in t, then the coefficients of tm with m < pq are
either 0 or 1.)

(iv) If n is not divisible by at least three distinct odd primes, then the
coefficients of Φn are 1, 0 or −1.

(v) Φ105 has at least one coefficient which is not 1, 0 or −1.

(19) Let µ = exp(2πi/n) where i =
√
−1, and let L = Q(µ) be the n-th cyclotomic

extension of Q. Show that the isomorphism Gal(L/Q)→ (Z/〈n〉)× sends the
automorphism given by complex conjugation to the class of −1. Deduce that
if n ≥ 3, then [L : L∩R] = 2 and show that L∩R = Q(µ+µ−1) = Q(cos 2π/n).


