Part II Galois theory (2014–2015) Example Sheet 1 c.birkar@dpmms.cam.ac.uk

- (1) Find the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} .
- (2) Let $K \subseteq L$ be a finite field extension such that [L : K] is prime. Show that any intermediate field $K \subseteq F \subseteq L$ is equal to K or equal to L.
- (3) Let $K \subseteq L$ be a field extension of degree 2. Show that if the characteristic of K is not 2, then $L = K(\alpha)$ for some $\alpha \in L$ with $\alpha^2 \in K$. Show that if the characteristic is 2, then either $L = K(\alpha)$ with $\alpha^2 \in K$, or $L = K(\alpha)$ with $\alpha^2 + \alpha \in K$.
- (4) Let $K \subseteq L$ be a field extension and $\alpha \in L$ an element with $[K(\alpha) : K]$ an odd number. Show that $K(\alpha) = K(\alpha^2)$.
- (5) Let $K \subseteq L$ be a field extension and $\alpha, \beta \in L$. Show that $\alpha + \beta$ and $\alpha\beta$ are algebraic over K if and only if α and β are algebraic over K.
- (6) Let K be a field and K(s) the field of rational functions in s over K, i.e. the fraction field of the polynomial ring K[s]. Determine all the elements of K(s) which are algebraic over K.
- (7) Let L be the set of all the numbers in \mathbb{C} which are algebraic over \mathbb{Q} . Show that L is a subfield of \mathbb{C} and that $[L : \mathbb{Q}]$ is infinite.
- (8) Let $K \subseteq L$ be a field extension and $\varphi \colon L \to L$ a K-homomorphism. Show that φ is a K-isomorphism if L is algebraic over K.
- (9) Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Calculate $[L : \mathbb{Q}]$ and $\operatorname{Aut}_{\mathbb{Q}}(L)$. Is $\mathbb{Q} \subseteq L$ a Galois extension?
- (10) Let $n \in \mathbb{N}$ and assume $f = t^{n-1} + t^{n-2} + \cdots + t + 1$ is irreducible in $\mathbb{Q}[t]$. Let $\mu = \exp(2\pi i/n)$ where $i = \sqrt{-1}$. Show that f is the minimal polynomial of μ over \mathbb{Q} . Next show that $\mathbb{Q} \subseteq \mathbb{Q}(\mu)$ is a Galois extension.
- (11) We use the notation and assumptions of the previous problem. Show that there is a natural group isomorphism $\operatorname{Gal}(\mathbb{Q}(\mu)/\mathbb{Q}) \to G$ where *G* is the multiplicative group of the unit elements of the ring $\mathbb{Z}/\langle n \rangle$.
- (12) Find a splitting field L over \mathbb{Q} for each of the following polynomials, and then calculate $[L : \mathbb{Q}]$ in each case:

$$t^4 - 5t^2 + 6, t^8 - 1, t^3 - 2$$

- (13) Let $K \subseteq L$ be a field extension and $f \in K[t]$ an irreducible polynomial of degree 2. Show that if f has a root in L, then L contains a splitting field of f over K.
- (14) Let K be a field and $f \in K[t]$ a polynomial of degree n. Show that if L is a splitting field of f over K, then $[L:K] \leq n!$.
- (15) Let K be a field of characteristic p > 0 such that every element of K is a p-th power, i.e. for each $a \in K$ there is $b \in K$ with $a = b^p$. Show that any polynomial in K[t] is separable.
- (16) Let K be a finite field. Show that every polynomial in K[t] is separable.
- (17) Let $K \subseteq L$ be an extension of fields of characteristic p > 0, and let $\alpha \in L$ be algebraic over K. Show that α is not separable over K if and only if $K(\alpha) \neq K(\alpha^p)$, and that if this is the case, then p divides $[K(\alpha):K]$.
- (18) Let $K \subseteq L$ be a finite extension of fields of characteristic p > 0 which is not separable. Show that p divides [L:K].
- (19) Let $K \subseteq L$ be a finite field extension. Show that there is a unique intermediate field $K \subseteq F \subseteq L$ such that $K \subseteq F$ is separable but $F \subseteq L$ is *purely inseparable*, i.e. no element $\alpha \in L \setminus F$ is separable over F. We call F the *separable closure* of K in L. Show that $|\operatorname{Hom}_F(L, E)| \leq 1$ for every extension $F \subseteq E$.
- (20) Let $K \subseteq L$ be a finite field extension inside \mathbb{C} . Show that if $K \neq L$, then $|\operatorname{Hom}_K(L,\mathbb{C})| \geq 2$.