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(1) Find the minimal polynomial of
√

2 +
√

3 over Q.

(2) Let K ⊆ L be a finite field extension such that [L : K] is prime.
Show that any intermediate field K ⊆ F ⊆ L is equal to K or equal
to L.

(3) Let K ⊆ L be a field extension of degree 2. Show that if the charac-
teristic of K is not 2, then L = K(α) for some α ∈ L with α2 ∈ K.
Show that if the characteristic is 2, then either L = K(α) with
α2 ∈ K, or L = K(α) with α2 + α ∈ K.

(4) LetK ⊆ L be a field extension and α ∈ L an element with [K(α) : K]
an odd number. Show that K(α) = K(α2).

(5) Let K ⊆ L be a field extension and α, β ∈ L. Show that α+ β and
αβ are algebraic over K if and only if α and β are algebraic over K.

(6) Let K be a field and K(s) the field of rational functions in s over
K, i.e. the fraction field of the polynomial ring K[s]. Determine all
the elements of K(s) which are algebraic over K.

(7) Let L be the set of all the numbers in C which are algebraic over Q.
Show that L is a subfield of C and that [L : Q] is infinite.

(8) Let K ⊆ L be a field extension and ϕ : L→ L a K-homomorphism.
Show that ϕ is a K-isomorphism if L is algebraic over K.

(9) Let L = Q(
√

2,
√

3). Calculate [L : Q] and AutQ(L). Is Q ⊆ L a
Galois extension?

(10) Let n ∈ N and assume f = tn−1 + tn−2 + · · · + t + 1 is irreducible
in Q[t]. Let µ = exp(2πi/n) where i =

√
−1. Show that f is the

minimal polynomial of µ over Q. Next show that Q ⊆ Q(µ) is a
Galois extension.

(11) We use the notation and assumptions of the previous problem. Show
that there is a natural group isomorphism Gal(Q(µ)/Q)→ G where
G is the multiplicative group of the unit elements of the ring Z/〈n〉.

(12) Find a splitting field L over Q for each of the following polynomials,
and then calculate [L : Q] in each case:

t4 − 5t2 + 6, t8 − 1, t3 − 2



(13) Let K ⊆ L be a field extension and f ∈ K[t] an irreducible polyno-
mial of degree 2. Show that if f has a root in L, then L contains a
splitting field of f over K.

(14) Let K be a field and f ∈ K[t] a polynomial of degree n. Show that
if L is a splitting field of f over K, then [L : K] ≤ n!.

(15) Let K be a field of characteristic p > 0 such that every element of
K is a p-th power, i.e. for each a ∈ K there is b ∈ K with a = bp.
Show that any polynomial in K[t] is separable.

(16) Let K be a finite field. Show that every polynomial in K[t] is sepa-
rable.

(17) Let K ⊆ L be an extension of fields of characteristic p > 0, and let
α ∈ L be algebraic over K. Show that α is not separable over K if
and only if K(α) 6= K(αp), and that if this is the case, then p divides
[K(α) : K].

(18) Let K ⊆ L be a finite extension of fields of characteristic p > 0 which
is not separable. Show that p divides [L : K].

(19) Let K ⊆ L be a finite field extension. Show that there is a unique
intermediate field K ⊆ F ⊆ L such that K ⊆ F is separable but
F ⊆ L is purely inseparable, i.e. no element α ∈ L \ F is separa-
ble over F . We call F the separable closure of K in L. Show that
|HomF (L,E)| ≤ 1 for every extension F ⊆ E.

(20) Let K ⊆ L be a finite field extension inside C. Show that if K 6= L,
then |HomK(L,C)| ≥ 2.


