Example sheet 3, Galois Theory (Michaelmas 2013)

a.j.scholl@dpmms.cam.ac.uk

This sheet covers lectures 13–17 (Galois extensions and finite fields).

1. Let L/K be a finite Galois extension, and F, F' intermediate fields.

(i) What is the subgroup of $\operatorname{Gal}(L/K)$ corresponding to the subfield $F \cap F'$?

(ii) Show that if $\sigma: F \xrightarrow{\sim} F'$ is a K-isomorphism, then the subgroups $\operatorname{Gal}(L/F)$, $\operatorname{Gal}(L/F') \subset \operatorname{Gal}(L/K)$ are conjugate.

2. Show that $L = \mathbb{Q}(\sqrt{2}, i)$ is a Galois extension of \mathbb{Q} and determine its Galois group G. Write down the lattice of subgroups of G and the corresponding subfields of L.

3. Show that $L = \mathbb{Q}(\sqrt[4]{2}, i)$ is a Galois extension of \mathbb{Q} , and show that $\operatorname{Gal}(K/\mathbb{Q})$ is isomorphic to D_4 , the dihedral group of order 8 (sometimes also denoted D_8). Write down the lattice of subgroups of D_4 (be sure you have found them all!) and the corresponding subfields of L. Which intermediate fields are Galois over \mathbb{Q} ?

4. (i) What are the transitive subgroups of S_4 ? Find a monic polynomial over \mathbb{Z} of degree 4 whose Galois group is $V = \{e, (12)(34), (13)(24), (14)(23)\}.$

(ii) Let $f \in \mathbb{Z}[X]$ be monic and separable of degree n. Suppose that the Galois group of f over \mathbb{Q} doesn't contain an *n*-cycle. Prove that the reduction of f modulo p is reducible for every prime p.

(iii) Hence exhibit an irreducible polynomial over \mathbb{Z} whose reduction mod p is reducible for every p.

5. (i) Let p be prime. Show that any transitive subgroup G of S_p contains a p-cycle. Show that if G also contains a transposition then $G = S_p$.

(ii) Prove that the Galois group of $X^5 + 2X + 6$ is S_5 .

(iii) Show that if $f \in \mathbb{Q}[X]$ is an irreducible polynomial of degree p which has exactly two non-real roots, then its Galois group is S_p . Deduce that for $m \in \mathbb{Z}$ sufficiently large,

$$f = X^p + mp^2(X-1)(X-2)\cdots(X-p+2) - p$$

has Galois group S_p .

6. (i) Let p be an odd prime, and let $x \in \mathbb{F}_{p^n}$. Show that $x \in \mathbb{F}_p$ iff $x^p = x$, and that $x + x^{-1} \in \mathbb{F}_p$ iff either $x^p = x$ or $x^p = x^{-1}$.

(ii) Apply (i) to a root of $X^2 + 1$ in a suitable extension of \mathbb{F}_p to show that -1 is a square in \mathbb{F}_p if and only if $p \equiv 1 \pmod{4}$. (You have probably seen a different proof of this fact in IB GRM.)

(iii) Show that $x^4 = -1$ iff $(x + x^{-1})^2 = 2$. Deduce that 2 is a square in \mathbb{F}_p if and only if $p \equiv \pm 1 \pmod{8}$.

7. Find the Galois group of $X^4 + X^3 + 1$ over each of the finite fields \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_4 .

8. Let p be a prime and $L = \mathbb{F}_p(X)$. Let a be an integer with $1 \leq a < p$, and let $\sigma \in \operatorname{Aut}(L)$ be the unique automorphism such that $\sigma(X) = aX$. Determine the subgroup $G \subset \operatorname{Aut}(L)$ generated by σ , and its fixed field L^G .

9. Compute the Galois group of $X^5 - 2$ over \mathbb{Q} .

10. Let L/K be Galois with group $G = \{\sigma_1, \ldots, \sigma_n\}$. Show that (x_1, \ldots, x_n) is a K-basis for L iff det $\sigma_i(x_j) \neq 0$.

11. (i) Let $f(X) = \prod_{i=1}^{n} (X - x_i)$. Show that $f'(x_i) = \prod_{j \neq i} (x_i - x_j)$, and deduce that $\text{Disc}(f) = (-1)^{n(n-1)/2} \prod_{i=1}^{n} f'(x_i)$.

(ii) Let $f(X) = X^n + bX + c = \prod_{i=1}^n (X - x_i)$, with $n \ge 2$. Show that

$$x_i f'(x_i) = (n-1)b\left(\frac{-nc}{(n-1)b} - x_i\right)$$

and deduce that

$$\operatorname{Disc}(f) = (-1)^{n(n-1)/2} \left((1-n)^{n-1} b^n + n^n c^{n-1} \right).$$

Additional examples (of varying difficulty)

12. Write $a_n(q)$ for the number of irreducible monic polynomials in $\mathbb{F}_q[X]$ of degree exactly n. (i) Show that an irreducible polynomial $f \in \mathbb{F}_q[X]$ of degree d divides $X^{q^n} - X$ if and only if d divides n.

(ii) Deduce that $X^{q^n} - X$ is the product of all irreducible monic polynomials of degree dividing n, and that

$$\sum_{d|n} da_d(q) = q^n.$$

(iii) Calculate the number of irreducible polynomials of degree 6 over \mathbb{F}_2 .

(iv) If you know about the Möbius function $\mu(n)$, use the Möbius inversion formula to show that

$$a_n(q) = \frac{1}{n} \sum_{d|n} \mu(n/d) q^d.$$

13. Let K be a field of characteristic p > 0. Let $a \in K$, and let $f \in K[X]$ be the polynomial $f(X) = X^p - X - a$. Show that f(X+b) = f(X) for every $b \in \mathbb{F}_p \subset K$. Now suppose that f does not have a root in K, and let L/K be a splitting field for f over K. Show that L = K(x) for any $x \in L$ with f(x) = 0, and that L/K is Galois, with Galois group isomorphic to $\mathbb{Z}/p\mathbb{Z}$.

14. (i) Let $f \in K[X]$ be a monic separable polynomial of degree n, with roots x_i in a splitting field L. Let

$$g_i(X) = \frac{f(X)}{f'(x_i)(X - x_i)} \in L[X] \qquad (1 \le i \le n).$$

Show that:

$$g_1 + \dots + g_n = 1 \tag{1}$$

$$g_i g_j \equiv \begin{cases} 0 \mod (f) & \text{if } j \neq i \\ g_i \mod (f) & \text{if } j = i \end{cases}$$

$$(2)$$

(Equation (1) is the "partial fractions" decomposition of 1/f(X).)

(ii) Let L/K be a finite Galois extension with Galois group $G = \{id = \sigma_1, \ldots, \sigma_n\}$. Let $x \in L$ be a primitive element with minimal polynomial $f \in K[X]$, and $x_i = \sigma_i(x)$. Let $\mathbf{A} = (A_{ij})$ be the matrix with entries $A_{ij} = \sigma_i \sigma_j g_1$. Use (2) to show that $\mathbf{A}^T \mathbf{A} \equiv \mathbf{I} \mod (f)$.

(iii) Assume that K is infinite. Use (ii) to show that there exists $b \in K$ such that $det(\sigma_i \sigma_j g_1(b)) \neq 0$. Deduce that if $y = g_1(b)$ then $\{\sigma(y) \mid \sigma \in G\}$ is a K-basis for L.

Such a basis $\{\sigma(y)\}$ is said to be a normal basis for L/K, and the result just proved is the Normal Basis Theorem.