Example sheet 2, Galois Theory (Michaelmas 2013)

a.j.scholl@dpmms.cam.ac.uk

This sheet covers lectures 7–12. Questions which might be more challenging are marked *.

Roots and splitting fields

- **1.** Let $f \in K[X]$, and let L = K(x)/K be an extension with f(x) = 0. Show that $[L : K] \le \deg(f)$, and that equality holds if and only if f is irreducible over K.
- **2.** Show that if f is an irreducible quadratic over the field K, and L = K(x) where f(x) = 0, then L is a splitting field for f.
- **3.** Find a splitting field K/\mathbb{Q} for each of the following polynomials, and calculate $[K:\mathbb{Q}]$ in each case:

$$X^4 - 5X^2 + 6$$
, $X^4 - 7$, $X^8 - 1$, $X^3 - 2$, (*) $X^4 + 4$.

4. Show that if L is a splitting field for a polynomial in K[X] of degree n, then $[L:K] \leq n!$.

Separability, primitive element theorem

- **5.** (i) Let K is a field of characteristic p > 0 such that every element of K is a p^{th} power. Show that any irreducible polynomial over K is separable.
- (ii) Deduce that if F is a finite field, then any irreducible polynomial over F is separable.
- (iii) A field is said to be *perfect* if every finite extension of it is separable. Show that any field of characteristic zero is perfect, and that a field of characteristic p > 0 is perfect if and only if every element is a p^{th} power.
- **6.** (i) Let K be a field of characteristic p > 0, and let x be algebraic over K. Show that x is inseparable over K if and only iff $K(x) \neq K(x^p)$, and that if this is the case, then p divides [K(x):K].
- (ii) Deduce that if L/K is a finite inseparable extension of fields of characteristic p, then p divides [L:K].
- 7. Let a and b be distinct rational numbers. By examining the proof of the primitive element theorem, show that $\mathbb{Q}(\sqrt{a}, \sqrt{b}) = \mathbb{Q}(\sqrt{a} + \sqrt{b})$.
- 8. Let $L = \mathbb{F}_p(X, Y)$ be the field of rational functions in two variables (i.e. the field of fractions of $\mathbb{F}_p[X, Y]$) and K the subfield $\mathbb{F}_p(X^p, Y^p)$. Show that for any $f \in L$ one has $f^p \in K$, and deduce that L/K is not a simple extension.

Algebraic closure

- **9.** Let F be a finite field. By considering the multiplicative group of F, or otherwise, write down a non-constant polynomial over F which does not have a root in F. Deduce that F cannot be algebraically closed.
- 10. * Let K_1 and K_2 be algebraically closed fields of the same characteristic. Show that either K_1 is isomorphic to a subfield of K_2 or K_2 is isomorphic to a subfield of K_1 . (Use Zorn's Lemma.)

Others

- 11. Let K be a field and $c \in K$. If m, n are coprime positive integers, show that $X^{mn} c$ is irreducible if and only if both $X^m c$ and $X^n c$ are irreducible. (One way is easy. For the other, use the Tower Law.)
- 12. (i) Let x be algebraic over K. Show that there is only a finite number of intermediate fields $K \subset K' \subset K(x)$. [Hint: consider the minimal polynomial of x over K'.]
- (ii) Show that if L/K is a finite extension of infinite fields for which there exist only finitely many intermediate subfields $K \subset K' \subset L$, then L = K(x) for some $x \in L$.
- 13. Let L/K be a field extension, and $\phi: L \to L$ a K-homomorphism. Show that if L/K is algebraic then ϕ is an isomorphism. Does this hold without the hypothesis L/K algebraic?
- **14.** * Show that the only field homomorphism $\mathbb{R} \to \mathbb{R}$ is the identity map.