Example Sheet 4. Galois Theory Michaelmas 2011

SEPARABILITY

- **4.1.** Show that every irreducible polynomial over a finite field is separable. More generally, show that if K is a field of characteristic p > 0 such that every element of K is a p-th power, then any irreducible polynomial over K is separable. [This shows that, a field of characteristic p > 0 is **perfect** (i.e., its every algebraic extension is separable) if and only if every element is a p-th power in that field.]
- **4.2.** Let F/K be a finite extension. Show that there is a unique intermediate field $K \subset L \subset F$ such that L/K is separable and F/L is **purely inseparable**, i.e. $|\text{Hom}_L(F, E)| \leq 1$ for every extension E/L. (This L is called the **separable closure** of K in F.)
- **4.3.** Let $F = \mathbb{F}_p(X,Y)$ be the field of rational functions in two variables (i.e. the field of fractions of $\mathbb{F}_p[X,Y]$) and K the subfield $\mathbb{F}_p(X^p,Y^p)$. Show that for any $f \in F$ one has $f^p \in K$, and deduce that F/K is not a simple extension.

DISCRIMINANTS

- **4.4.** Let P be an irreducible cubic polynomial over K with char $K \neq 2$, and let δ be a square root of the discriminant of P. Show that P remains irreducible over $K(\delta)$.
- **4.5.** (i) Show that the discriminant of $X^4 + pX + q$ is $-27p^4 + 256q^3$. [Hint: it is a symmetric polynomial of degree 12, hence a \mathbb{Z} -linear combination of p^4 and q^3 . By making good choices for p, q, determine the coefficients.]
- (ii) Show that the discriminant of $X^5 + pX + q$ is $4^4p^5 + 5^5q^4$. (The discriminant of a general quintic will have 59 terms...)
- **4.6.** Let P be an irreducible separable quartic, and Q its resolvent cubic. Show that the discriminants of P and Q are equal. [Recall: if $\alpha + \beta + \gamma + \delta = a$ and $\alpha' = \alpha \frac{a}{4}$ etc, then the roots of Q are $(\alpha' + \beta')^2$, $(\alpha' + \gamma')^2$ and $(\alpha' + \delta')^2$.]

Galois groups over Q

4.7. (i) Determine the Galois groups of the following cubics in $\mathbb{Q}[X]$:

$$X^3 + 3X$$
, $X^3 + 27X - 4$, $X^3 - 21X + 7$, $X^3 + X^2 - 2X - 1$, $X^3 + X^2 - 2X + 1$.

(ii) Determine the Galois groups of the following quartics in $\mathbb{Q}[X]$:

$$X^4 + 4X^2 + 2$$
, $X^4 + 2X^2 + 4$, $X^4 + 4X^2 - 5$, $X^4 - 2$, $X^4 + 2$, $X^4 + X + 1$, $X^4 + X^3 + X^2 + X + 1$.

- **4.8.** (i) What are the transitive subgroups of S_4 ? Find a monic polynomial over \mathbb{Z} of degree 4 whose Galois group is $V_4 = \{e, (12)(34), (13)(24), (14)(23)\}$.
- (ii) Let $P \in \mathbb{Z}[X]$ be monic and strictly separable (i.e. no multiple root in its splitting field) of degree n. Suppose that the Galois group of P over \mathbb{Q} doesn't contain an n-cycle. Prove that the reduction of P modulo p is reducible for every prime p (see Problem 3.13).
- **4.9.** (i) Let p be prime. Show that any transitive subgroup G of S_p contains a p-cycle. Show that if G also contains a transposition then $G = S_p$.
 - (ii) Prove that the Galois group of $X^5 + 2X + 6$ is S_5 .
- (iii) Show that if $P \in \mathbb{Q}[X]$ is an irreducible polynomial of degree p which has exactly two non-real roots, then its Galois group is S_p . Deduce that for an odd prime p and a sufficiently large $m \in \mathbb{Z}$,

$$P(X) = X^{p} + mp^{2}(X - 1)(X - 2) \cdots (X - p + 2) - p$$

has Galois group S_p .

LINEAR ALGEBRAIC APPROACH

- **4.10.** We saw that we can prove the fundamental theorem of Galois theory without using the primitive element theorem. Now deduce the primitive element theorem from the fundamental theorem. (Use Problem 1.10.)
- **4.11.** Let F/K be a cyclic extension of prime degree p, and σ a generator of Gal(F/K). Denote the trace of F/K by $T_{F/K}: F \to K$.
- (i) Show that $T_{F/K}(\sigma(x) x) = 0$ for all $x \in F$. Deduce that if $y \in F$ then $T_{F/K}(y) = 0$ if and only if $y = \sigma(x) x$ for some $x \in F$.
- (ii) (Artin-Schreier theory) Suppose that K has characteristic p. Use (i) to show that every element of K can be written in the form $\sigma(x) x$ for some $x \in F$. Show also that if $\sigma(x) x \in \mathbb{F}_p$ then $x^p x \in K$. Deduce that F/K is an Artin-Schreier extension (described in Problem 3.10).

[This is the analogue of Kummer theory in characteristic p > 0. The natural analogue of radical extensions in characteristic p is to consider the tower of abelian extensions which involve Kummer and Artin-Schreier extensions.]

OPTIONAL (NOT NECESSARILY HARDER)

- **4.12.*** Let K be a field of characteristic p > 0, and let x be algebraic over K. Show that x is separable over K if and only if and only if $K(x) = K(x^p)$.
- **4.13.*** (i) Let K be a field of characteristic p > 0 and c an element of K which is not a p-th power. Let n > 0 and $q = p^n$. Show that $P(X) = X^q c$ is irreducible in K[X] and is inseparable, and that its splitting field is of the form F = K(x) with $x^q = c$.
- (ii) Let F/K be a finite, purely inseparable extension (see Problem 4.2) of characteristic p. Show that if $x \in F$ then $x^{p^n} \in K$ for some $n \in \mathbb{N}$. Deduce that there is a chain of subfields $K = K_0 \subset K_1 \subset \cdots \subset K_r = F$ where each extension K_i/K_{i-1} is of the type described in (i).

4.14.* Let $P(X) = X^4 + 8X + 12 \in \mathbb{Q}[X]$. Compute the discriminant and resolvent cubic Q of P. Show P and Q are both irreducible, and that the Galois group of P is A_4 .

4.15.* (i) (Vandermonde determinant) Show that if X_1, \ldots, X_n are indeterminates, then

$$\begin{vmatrix} X_1^{n-1} & X_2^{n-1} & \cdots & X_n^{n-1} \\ X_1^{n-2} & X_2^{n-2} & \cdots & X_n^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ X_1 & X_2 & \cdots & X_n \\ 1 & 1 & \cdots & 1 \end{vmatrix} = \prod_{1 \le i < j \le n} (X_i - X_j).$$

(First show that each $(X_i - X_j)$ is a factor of the determinant.)

(ii) For $P(X) = \prod_{i=1}^n (X - x_i)$, show that $P'(x_i) = \prod_{j \neq i} (x_i - x_j)$, and deduce that its discriminant is given by $\Delta_P = (-1)^{n(n-1)/2} \prod_{i=1}^n P'(x_i)$.

(iii) Now suppose $P(X) = X^n + pX + q = \prod_{i=1}^n (X - x_i)$, with $n \ge 2$. Show that

$$x_i P'(x_i) = (n-1)p(\frac{-nq}{(n-1)p} - x_i)$$

and deduce that

$$\Delta_P = (-1)^{n(n-1)/2} \left((1-n)^{n-1} p^n + n^n q^{n-1} \right).$$

4.16.* Compute the discriminant of $X^{p^n} - 1$ for a prime p and $n \ge 1$.

4.17.* (i) Show that the Galois group of $X^5 - 4X + 2$ over \mathbb{Q} is S_5 , and determine its Galois group over $\mathbb{Q}(i)$.

(ii) Find the Galois group of $X^4 - 4X + 2$ over \mathbb{Q} and over $\mathbb{Q}(i)$.

4.18.* Let $\alpha = \sqrt[3]{a+b\sqrt{2}}$ for $a,b \in \mathbb{Q}$, and let F be the splitting field for the minimal polynomial of α over $\mathbb{Q}(\boldsymbol{\mu}_3)$. Determine the possible groups for $\operatorname{Gal}(F/\mathbb{Q}(\boldsymbol{\mu}_3))$.

4.19.* (Normal Basis Theorem) In this example we show that if F/K if a finite Galois extension of infinite fields, then there exists $y \in F$ such that $\{\sigma(y) \mid \sigma \in \operatorname{Gal}(F/K)\}$ is a basis for F/K. (Such a basis $\{\sigma(y)\}$ is said to be a **normal basis** for F/K.)

(i) Let $P \in K[X]$ be a monic strictly separable (i.e. no multiple root in its splitting field) polynomial of degree n, with roots x_i in a splitting field F. Let

$$Q_i(X) = \frac{P(X)}{P'(x_i)(X - x_i)} \in F[X] \qquad (1 \le i \le n).$$

Show that, in F[X]:

$$(1) Q_1 + \dots + Q_n = 1$$

(2)
$$Q_i Q_j \equiv \begin{cases} 0 & (\operatorname{mod}(P)) & \text{if } j \neq i \\ Q_i & (\operatorname{mod}(P)) & \text{if } j = i \end{cases}$$

(Equation (1) is the "partial fractions" decomposition of 1/P(X).)

- (ii) Let F/K be a finite Galois extension and $\operatorname{Gal}(F/K) = \{\sigma_1, \ldots, \sigma_n\}$ with $\sigma_1 = \operatorname{id}$. Let $x \in F$ be such that F = K(x) and its minimal polynomial over K is $P \in K[X]$, and $x_i = \sigma_i(x)$. Let $A = (a_{ij})$ be the matrix with entries $a_{ij} := \sigma_i \sigma_j Q_1 \in F[X]$. Use (1),(2) of (i) to show that $A^t A \equiv I_n \pmod{P}$.
- (iii) Assume that K is infinite. Use (ii) to show that there exists $b \in K$ such that $\det(\sigma_i \sigma_j Q_1(b)) \neq 0$. Deduce that $\{\sigma_1(y), \ldots, \sigma_n(y)\}$ for $y = Q_1(b)$ is a K-basis of F.

November 24, 2011

t.yoshida@dpmms.cam.ac.uk