
Example Sheet 3. Galois Theory Michaelmas 2011

Finite fields

3.1. The polyonomials P (X) = X3 +X + 1, Q(X) = X3 +X2 + 1 are irreducible over F2.
Let K be a field obtained from F2 by adjoining a root of P , and K ′ be the field obtained
from F2 by adjoining a root of Q. Describe explicitly an isomorphism from K to K ′.

3.2. Find the Galois group of X4 +X3 + 1 (that is, the Galois group of its splitting field)
over each of the finite fields F2,F3,F4.

3.3. Let P ∈ Fq[X] be a polynomial over a finite field. Describe the Galois group of P over
Fq in terms of the irreducible factors of P .

Cyclotomic fields

For an integer N ≥ 1, we denote by K(µN ) the N -th cyclotomic extension of K, i.e. a
splitting field of XN − 1 over K; when K ⊂ C, we write ζN = exp(2πi/N).

3.4. (i) Find all the subfields of Q(µ7), expressing them in the form Q(α). Which are
Galois over Q?

(ii) Find all the quadratic subfields of Q(µ15).

3.5. (i) Show that a regular 7-gon is not constructible by ruler and compass.

(ii) When the angle 2π/N is given, for which N is it possible to trisect this angle using
ruler and compass? [Ruler and compass can only solve successive quadratic extensions.]

3.6. Consider K = Q(µN ) ⊂ C. Show that under the canonical isomorphism Gal(K/Q) ∼=
(Z/(N))×, the complex conjugation is identified with the residue class of −1 (mod N).
Deduce that if N ≥ 3, then [K : K ∩ R] = 2 and show that K ∩ R = Q(ζN + ζ−1

N ) =
Q(cos 2π/N).

3.7. Show that Q(µ21) has exactly three subfields of degree 6 over Q. Show that one of
them is Q(µ7), one is real, and the other is a cyclic extension K/Q(µ3). Use a suitable
Lagrange resolvent to find a ∈ Q(µ3) such that K = Q(ζ3, 3

√
a).

Function fields

3.8. (i) Let K(X) be a rational function field over a field K. Let r = p/q ∈ K(X) be a
non-constant rational function. Find a polynomial in K(r)[T ] which has X as a root.

(ii) Let L be a subfield of K(X) containing K. Show that either K(X)/L is finite, or
L = K. Deduce that the only elements of K(X) which are algebraic over K are constants.



3.9. Let K be any field, and let F = K(X), a rational function field. Define the maps
σ, τ : F → F by the formulae

τf(X) = f
( 1

X

)
, σf(X) = f

(
1− 1

X

)
(∀f ∈ F ).

Show that σ, τ areK-homomorphism of F , and that they generate a subgroupG ⊂ AutK(F )
isomorphic to S3. Show that FG = K(g), where

g(X) =
(X2 −X + 1)3

X2(X − 1)2
∈ F.

3.10. (i) Let L/K be an extension of degree 2. Show that if the characteristic of K is 2,
then either L = K(α) with α2 ∈ K, or L = K(α) with α2 + α ∈ K.

(ii) (Artin-Schreier extensions) Let K be a field of characteristic p > 0. Let a ∈ K,
and consider the polynomial P (X) = Xp −X − a ∈ K[X]. Show that P (X + b) = P (X)
for every b ∈ Fp ⊂ K. Now suppose that P does not have a root in K, and let F/K be a
splitting field for P over K. Show that F = K(α) for any α ∈ F with P (α) = 0, and that
F/K is Galois, with Galois group isomorphic to Z/pZ.

3.11. Let p be a prime and F = Fp(X). Let a be an integer with 1 ≤ a < p, and let
σ ∈ Aut(F ) be the unique automorphism such that σ(X) = aX. Determine the subgroup
G ⊂ Aut(F ) generated by σ, and its fixed field FG.

Optional (not necessarily harder)

3.12.∗ (i) Let p be an odd prime, and let x ∈ F×
pn . Show that x ∈ Fp if and only if xp = x,

and that x+ x−1 ∈ Fp if and only if either xp = x or xp = x−1.

(ii) Apply (i) to a root of X2 + 1 in a suitable extension of Fp to show that that −1 is a
square in Fp if and only if p ≡ 1 (mod 4).

(iii) Show that x4 = −1 if and only if (x+ x−1)2 = 2. Deduce that 2 is a square in Fp if
and only if p ≡ ±1 (mod 8).

3.13.∗ Show that the minimal polynomial of
√
2+

√
3 over Q (cf. Problem 1.5) is reducible

modp for all primes p. (First show that for every p, one of 2, 3 or 6 is a square in Fp.)

3.14.∗ Factor the polynomials: X9 −X ∈ F3[X], X16 −X ∈ F4[X], X16 −X ∈ F8[X].

3.15.∗ Write an(q) for the number of irreducible monic polynomials in Fq[X] of degree
exactly n.

(i) Show that an irreducible polynomial P ∈ Fq[X] of degree d divides Xqn − X if and
only if d divides n.

(ii) Deduce that Xqn −X is the product of all irreducible monic polynomials of degree
dividing n, and that ∑

d|n

dad(q) = qn.



(iii) Calculate the number of irreducible polynomials of degree 6 over F2.

(iv) If you know about the Möbius function µ(n), use the Möbius inversion formula to
show that

an(q) =
1

n

∑
d|n

µ(n/d)qd.

3.16.∗ (i) Let F/K be a finite Galois extension, and H1, H2 subgroups of Gal(F/K), with
fixed fields L1, L2. Identify the subgroup of Gal(F/K) corresponding to the field L1 ∩ L2.

(ii) Show that the fixed field of H1 ∩H2 is the composite field (see Problem 2.12 for the
definition) L1L2 of L1, L2.

(iii) Show Q(µM ) ·Q(µN ) = Q(µMN ) if M,N ≥ 1 are relatively prime.

3.17.∗ (i) Let f ∈ K(X). Show that K(X) = K(f) if and only if f = (aX + b)/(cX + d)

for some a, b, c, d ∈ K with ad− bc ̸= 0. (ii) Show that Aut(K(X)/K)
∼=−→ PGL2(K).

[Hint: For f = p(X)/q(X), use Gauss’ Lemma for p(T )− fq(T ) ∈ K(f)[T ].]

3.18.∗ Let K be any field and F = K(X) the field of rational functions over K.

(i) Show that for every a ∈ K there is a unique σa ∈ AutK(F ) with σa(X) = X + a.

(ii) Let G = {σa | a ∈ K}. Show that G is a subgroup of AutK(F ), isomorphic to the
additive group of K. Show that if K is infinite, then FG = K.

(iii) Assume that K has characteristic p > 0, and let H = {σa | a ∈ Fp}. Show that
FH = K(Y ) with Y = Xp −X. [See also Problem 3.10.]

Appendix: Number theory

3.19.∗ (i) Let p be an odd prime. Show that if r ∈ Z then
∑

0≤s<p ζ
rs
p equals p if r ≡ 0

(mod p) and equals 0 otherwise.

(ii) Let τ =
∑

0≤n<p ζ
n2

p . Show that ττ = p. Show also that τ is real if −1 is a square

mod p, and otherwise τ is purely imaginary (i.e. τ/i ∈ R).
(iii) Let F = Q(µp). Show that F has a unique subfield K which is quadratic over Q,

and that K = Q(
√
εp) where ε = (−1)(p−1)/2.

(iv) Show that Q(µM ) ⊂ Q(µN ) if M |N . Deduce that if 0 ̸= m ∈ Z then Q(
√
m) is a

subfield of Q(µ4|m|). [This is a simple case of the Kronecker-Weber Theorem.]

3.20.∗ Let ΦN ∈ Z[X] denote the N -th cyclotomic polynomial. Show that:

(i) If N is odd and N ̸= 1 then Φ2N (X) = ΦN (−X).

(ii) If p is a prime dividing N then ΦNp(X) = ΦN (Xp).

(iii) If p and q are distinct primes then the nonzero coefficients of Φpq are alternately +1
and −1. [Hint: First show that if 1/(1−Xp)(1−Xq) is expanded as a power series in X,
then the coefficients of Xm with m < pq are either 0 or 1.]

(iv) If N is not divisible by at least three distinct odd primes then the coefficients of ΦN

are −1, 0 or 1.

(v) Φ3×5×7 has at least one coefficient which is not −1, 0 or 1.



3.21.∗ In this question we determine the structure of the groups (Z/(N))×.

(i) Let p be an odd prime. Show that (1 + p)p
n−2 ≡ 1 + pn−1 (mod pn) for every n ≥ 2.

Deduce that 1 + p has order pn−1 in (Z/(pn))×.
(ii) If b ∈ Z with (p, b) = 1 and b has order p− 1 in (Z/(p))× and n ≥ 1, show that bp

n−1

has order p−1 in (Z/(pn))×. Deduce that (Z/(pn))× is cyclic for n ≥ 1 and p an odd prime.

(iii) Show that 52
n−3 ≡ 1 + 2n−1 (mod 2n) for every n ≥ 3. Deduce that (Z/(2n))× is

generated by 5 and −1, and is isomorphic to Z/2n−2Z× Z/2Z, for any n ≥ 2.

(iv) Use the Chinese Remainder Theorem to deduce the structure of (Z/(N))× in general.

3.22.∗ Use (1) the structure of (Z/(N))× (Problem 3.21), (2) the Dirichlet’s theorem on
primes in arithmetic progressions, stating that if a and b are coprime positive integers,
then the set {an+b | n ∈ N} contains infinitely many primes, and (3) the structure theorem
for finite abelian groups to show that every finite abelian group is isomorphic to a quotient
of (Z/(N))× for suitable N .

Deduce that every finite abelian group is the Galois group of some Galois extension K/Q.
[It is a long-standing unsolved problem (inverse Galois problem) to show this holds for
an arbitrary finite group.]

Find an explicit α ∈ C for which Q(α)/Q is abelian with Galois group Z/23Z.
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