Example Sheet 3. Galois Theory Michaelmas 2011

FINITE FIELDS

3.1. The polyonomials P(X) = X3+ X +1, Q(X) = X?+ X2+ 1 are irreducible over F,.
Let K be a field obtained from Fs by adjoining a root of P, and K’ be the field obtained
from Fy by adjoining a root of (). Describe explicitly an isomorphism from K to K’.

3.2. Find the Galois group of X% 4 X3 4+ 1 (that is, the Galois group of its splitting field)
over each of the finite fields Fy, F3, F4.

3.3. Let P € [F;[X] be a polynomial over a finite field. Describe the Galois group of P over
[F, in terms of the irreducible factors of P.
CYCLOTOMIC FIELDS

For an integer N > 1, we denote by K () the N-th cyclotomic extension of K, i.e. a
splitting field of X — 1 over K; when K C C, we write (y = exp(2mi/N).

3.4. (i) Find all the subfields of Q(u;), expressing them in the form Q(a). Which are
Galois over Q7

(ii) Find all the quadratic subfields of Q(ty5).

3.5. (i) Show that a regular 7-gon is not constructible by ruler and compass.

(ii) When the angle 27/N is given, for which N is it possible to trisect this angle using
ruler and compass? [Ruler and compass can only solve successive quadratic extensions.]

3.6. Consider K = Q(uy) C C. Show that under the canonical isomorphism Gal(K/Q) =
(Z/(N))*, the complex conjugation is identified with the residue class of —1 (mod N).
Deduce that if N > 3, then [K : K NR] = 2 and show that K "R = Q(({y + (y') =
Q(cos2m/N).

3.7. Show that Q(p,;) has exactly three subfields of degree 6 over Q. Show that one of
them is Q(p;), one is real, and the other is a cyclic extension K/Q(u3). Use a suitable
Lagrange resolvent to find a € Q(u3) such that K = Q((3, ¥a).

FUNCTION FIELDS

3.8. (i) Let K(X) be a rational function field over a field K. Let r = p/q € K(X) be a
non-constant rational function. Find a polynomial in K (r)[T] which has X as a root.

(ii) Let L be a subfield of K(X) containing K. Show that either K(X)/L is finite, or
L = K. Deduce that the only elements of K (X) which are algebraic over K are constants.



3.9. Let K be any field, and let F = K(X), a rational function field. Define the maps
0,7 : F'— F by the formulae

1 1
0= (%) of0=f(1-%) (fer).
Show that o, 7 are K-homomorphism of F', and that they generate a subgroup G C Autg (F)
isomorphic to S3. Show that F¢ = K(g), where
X2 - X+1)3
gx) = X=X+

F
X2(x -1 ©

3.10. (i) Let L/K be an extension of degree 2. Show that if the characteristic of K is 2,
then either L = K(a) with o? € K, or L = K(a) with o? + a € K.

(ii) (Artin-Schreier extensions) Let K be a field of characteristic p > 0. Let a € K,
and consider the polynomial P(X) = XP — X —a € K[X]. Show that P(X + b) = P(X)
for every b € F,, C K. Now suppose that P does not have a root in K, and let F'//K be a
splitting field for P over K. Show that F' = K(«) for any a € F with P(«) = 0, and that
F/K is Galois, with Galois group isomorphic to Z/pZ.

3.11. Let p be a prime and F' = F,(X). Let a be an integer with 1 < a < p, and let
o € Aut(F) be the unique automorphism such that o(X) = aX. Determine the subgroup
G C Aut(F) generated by o, and its fixed field F©.

OPTIONAL (NOT NECESSARILY HARDER)

3.12.* (i) Let p be an odd prime, and let x € IF;TL. Show that x € ), if and only if 2P = z,
1

and that x + 27! € F, if and only if either 2 = x or 2 = 27 ".
(ii) Apply (i) to a root of X%+ 1 in a suitable extension of F, to show that that —1 is a
square in [}, if and only if p =1 (mod 4).
(iii) Show that z* = —1 if and only if (z + 27 !)? = 2. Deduce that 2 is a square in F, if
and only if p = +1 (mod 8).

3.13.* Show that the minimal polynomial of v/2+ /3 over Q (cf. Problem 1.5) is reducible
modp for all primes p. (First show that for every p, one of 2, 3 or 6 is a square in F,,.)

3.14.* Factor the polynomials: X? — X € F3[X], X1® — X € Fy[X], X6 — X € Fg[X].

3.15.* Write a,(¢q) for the number of irreducible monic polynomials in Fy[X] of degree
exactly n.

(i) Show that an irreducible polynomial P € F,[X] of degree d divides X" — X if and
only if d divides n.

(ii) Deduce that X" — X is the product of all irreducible monic polynomials of degree

dividing n, and that
> dag(q) = q"
din



(iii) Calculate the number of irreducible polynomials of degree 6 over Fo.

(iv) If you know about the Mobius function p(n), use the Mobius inversion formula to
show that

an0) = - " uln/d)g"

dn

3.16." (i) Let F//K be a finite Galois extension, and Hy, Hy subgroups of Gal(F/K), with
fixed fields L1, L. Identify the subgroup of Gal(F/K) corresponding to the field L; N Lo.

(ii) Show that the fixed field of Hy N Hj is the composite field (see Problem 2.12 for the
deﬁnition) L1L2 of Ll, LQ.

(iii) Show Q(peps) - Quey) = Q(pepry) if M, N > 1 are relatively prime.

3.17.% (i) Let f € K(X). Show that K(X) = K(f) if and only if f = (aX +b)/(cX + d)
for some a, b, ¢, d € K with ad — be # 0. (i) Show that Aut(K(X)/K) — PGLy(K).
[Hint: For f = p(X)/q(X), use Gauss’ Lemma for p(T") — fq(T) € K(f)[T].]

3.18.* Let K be any field and F' = K(X) the field of rational functions over K.
(i) Show that for every a € K there is a unique o, € Autg (F) with 0,(X) = X + a.

(ii) Let G = {0, | a € K}. Show that G is a subgroup of Autg (F'), isomorphic to the
additive group of K. Show that if K is infinite, then F¢ = K.

(iii) Assume that K has characteristic p > 0, and let H = {0, | a € Fp}. Show that
FH = K(Y) with Y = X? — X. [See also Problem 3.10.]

APPENDIX: NUMBER THEORY

3.19." (i) Let p be an odd prime. Show that if r € Z then ZO§8<]) ¢ equals p if r =0
(mod p) and equals 0 otherwise.

(i) Let 7 =3 5<pep C;}Z. Show that 77 = p. Show also that 7 is real if —1 is a square
mod p, and otherwise 7 is purely imaginary (i.e. 7/i € R).

(iii) Let F' = Q(p,). Show that F' has a unique subfield K which is quadratic over Q,
and that K = Q(,/zp) where ¢ = (—1)(P~1/2,

(iv) Show that Q(u,;) C Q(uy) if M|N. Deduce that if 0 # m € Z then Q(y/m) is a
subfield of Q(fty),,)). [This is a simple case of the Kronecker-Weber Theorem.|

3.20.* Let &y € Z[X] denote the N-th cyclotomic polynomial. Show that:
(i) If N is odd and N # 1 then ®on(X) = Py (—X).
(ii) If p is a prime dividing N then ®y,(X) = ®n(XP).
(iii) If p and ¢ are distinct primes then the nonzero coefficients of ®,, are alternately +1

and —1. [Hint: First show that if 1/(1 — X?)(1 — X?) is expanded as a power series in X,
then the coefficients of X™ with m < pq are either 0 or 1.]

(iv) If N is not divisible by at least three distinct odd primes then the coefficients of @y
are —1, 0 or 1.

(v) ®3x5x7 has at least one coefficient which is not —1, 0 or 1.



X

3.21.* In this question we determine the structure of the groups (Z/(N))*.
(i) Let p be an odd prime. Show that (1 + p)?" > =1+ p" ! (mod p") for every n > 2.
Deduce that 1 + p has order p"~! in (Z/(p"))*.

(i) If b € Z with (p,b) = 1 and b has order p— 1 in (Z/(p))* and n > 1, show that b*" '
has order p—11in (Z/(p™))*. Deduce that (Z/(p™))* is cyclic for n > 1 and p an odd prime.

(iii) Show that 52" ° = 1+ 27! (mod 2") for every n > 3. Deduce that (Z/(2"))* is
generated by 5 and —1, and is isomorphic to Z/2" 27 x Z/27Z, for any n > 2.

(iv) Use the Chinese Remainder Theorem to deduce the structure of (Z/(N))* in general.

3.22.* Use (1) the structure of (Z/(N))* (Problem 3.21), (2) the Dirichlet’s theorem on
primes in arithmetic progressions, stating that if ¢ and b are coprime positive integers,
then the set {an+b | n € N} contains infinitely many primes, and (3) the structure theorem

for finite abelian groups to show that every finite abelian group is isomorphic to a quotient
of (Z/(N))* for suitable N.

Deduce that every finite abelian group is the Galois group of some Galois extension K/Q.
[It is a long-standing unsolved problem (inverse Galois problem) to show this holds for
an arbitrary finite group.]

Find an explicit o € C for which Q(«)/Q is abelian with Galois group 7Z/237Z.
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