Example Sheet 2. Galois Theory Michaelmas 2011

Note. You can assume that all non-finite fields are subfields of \mathbb{C} , as assumed in this part of the lectures. However, most proofs work without that assumption (where an extension L/K simply means that K is a subfield of L).

GALOIS EXTENSIONS AND GALOIS GROUPS

2.1. Find the splitting field F/\mathbb{Q} for each of the following polynomials (by factoring them explicitly in $\mathbb{C}[X]$), and calculate $[F:\mathbb{Q}]$ in each case:

$$X^4 - 5X^2 + 6$$
, $X^4 - 7$, $X^8 - 1$, $X^3 - 2$, $X^4 + 4$.

- **2.2.** Show that if F is a splitting field over K for $P \in K[X]$ of degree n, then $[F:K] \leq n!$.
- **2.3.** Show that all subextensions of an abelian extension are abelian.
- **2.4.** (i) Let $F = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Determine $[F : \mathbb{Q}]$ and $\mathrm{Aut}_{\mathbb{Q}}(F)$.
- (ii) (**Biquadratic extensions**) Let $\mathbb{Q} \subset K$ (or char $K \neq 2$). Prove that every extension F/K with [F:K]=4 and $\mathrm{Aut}_K(F)\cong \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}$ is of the form $F=K(\sqrt{a},\sqrt{b})$.
- **2.5.** Let P be an irreducible quartic polynomial over K with $\mathbb{Q} \subset K$ (or char $K \neq 2$), whose Galois group is A_4 . Show that its splitting field can be written in the form $L(\sqrt{a}, \sqrt{b})$ where L/K is a Galois cubic extension and $a, b \in L$.
- **2.6.** Show that $F = \mathbb{Q}(\sqrt[4]{2}, i)$ is a Galois extension of \mathbb{Q} , and show that $Gal(F/\mathbb{Q})$ is isomorphic to D_8 , the dihedral group of order 8. Write down the lattice of subgroups of D_8 (be sure you have found them all!) and the corresponding subfields of F. Which subfields are Galois over \mathbb{Q} ?
- **2.7.** Recall (or show) that for any $n \ge 1$ there exists a Galois extension of fields F/K with $\operatorname{Gal}(F/K) \cong S_n$, the symmetric group of degree n. Show that for any finite group G there exists a Galois extension whose Galois group is isomorphic to G.
- **2.8.** Let n > 1, and K be a field containing a primitive n-th root of unity. Assume that $X^n a$ and $X^n b$ are two irreducible polynomials in K[X]. Show that they have the same splitting field if and only if $b = c^n a^r$ for some $c \in K$ and $r \in \mathbb{N}$ with gcd(r, n) = 1.
- **2.9.** Compute the Galois group of $X^5 2$ over \mathbb{Q} .
- **2.10.** Write $\cos(2\pi/17)$ explicitly in terms of radicals.

- **2.11.*** Let K be a field and $c \in K$. If $m, n \in \mathbb{Z}_{>0}$ are coprime, show that $X^{mn} c$ is irreducible if and only if both $X^m c$ and $X^n c$ are irreducible. [Use the Tower Law.]
- **2.12.*** Let $K \subset \mathbb{C}$, and F, L be two finite extensions of K, contained in \mathbb{C} . Let FL be the **composite field** of F and L, i.e. the extension of K generated by the elements of F, L (or, the set of all finite sums $\sum_i x_i y_i$ for $x_i \in F$, $y_i \in L$; see Problem 1.16).
 - (i) Assume that F/K and L/K are both Galois. Show that FL/K is Galois.
- (ii) Assume that F/K and L/K are both soluble (i.e. Galois with soluble Galois groups). Show that FL/K is soluble. [Hint: recall the relation between Gal(FL/L) and Gal(F/K).]
- **2.13.*** (i) For a group G, its **derived subgroup** G^{der} is the subgroup generated by all the elements of the form $xyx^{-1}y^{-1}$ for $x,y\in G$. Show that G^{der} is normal, and that G/G^{der} is abelian (it is the **maximal abelian quotient** of G, i.e. every group homomorphism from G to an abelian group factors through G/G^{der}).
- (ii) For a finite group G, let $G_0 = G$, $G_i = (G_{i-1})^{\text{der}}$ for $i \in \mathbb{N}$. Show that G is soluble if and only if there is an i such that $G_i = \{\text{id}\}$.
- (iii) Let G be the group of invertible $n \times n$ upper triangular matrices with entries in a finite field K. Show that G is soluble.
- **2.14.*** Determine whether the following nested radicals can be unnested, i.e. written as \mathbb{Q} -linear combination of square roots of rationals; if so, find an expression:

$$\sqrt{2+\sqrt{11}}$$
, $\sqrt{6+\sqrt{11}}$, $\sqrt{11+6\sqrt{2}}$, $\sqrt{11+\sqrt{6}}$.

- **2.15.*** Show that $\mathbb{Q}(\sqrt{2+\sqrt{2+\sqrt{2}}})$ is abelian over \mathbb{Q} , and determine its Galois group.
- **2.16.*** (i) Let p be a prime, and K be a field with char $K \neq p$ and $K' := K(\mu_p)$. For $a \in K$, show that $X^p a$ is irreducible over K if and only if it is irreducible over K'. Is the result true if p is not assumed to be prime?
- (ii) If K contains a primitive n-th root of unity, then show that $X^n a$ is reducible over K if and only if a is a d-th power in K for some divisor d > 1 of n. Show that this need not be true if K doesn't contain a primitive n-th root of unity.