Example Sheet 4. Lectures 19-23, Galois Theory Michaelmas 2010

CUBICS, QUARTICS AND DISCRIMINANTS

4.1. Let P be an irreducible cubic polynomial over K with char K # 2, and let § be a
square root of the discriminant of P. Show that P remains irreducible over K (9).

4.2. (i) Show that the discriminant of X4+ pX +q is —27p*+256¢>. [Hint: It is a symmetric
polynomial of degree 12, hence a linear combination of p* and ¢*. By making good choices
for p, q, determine the coefficients.]

(ii) Show that the discriminant of X° + pX + ¢ is 4*p® + 5°¢*. (The discriminant of a
general quintic will have 59 terms...)

4.3. Let P be an irreducible quartic polynomial over K with char K # 2, whose Galois
group is A4. Show that its splitting field can be written in the form L(v/a, vb) where L/K
is a Galois cubic extension and a,b € L.

4.4. Let P be an irreducible separable quartic, and @ its resolvent cubic. Show that the
discriminants of P and @ are equal.

4.5. Show that Q(p9;) has exactly three subfields of degree 6 over Q. Show that one of
them is Q(p;), one is real, and the other is a cyclic extension K/Q(u3). Use a suitable
Lagrange resolvent to find a € Q(p3) such that K = Q((3, ¥/a).

4.6.* Let P(X) = X*+8X +12 € Q[X]. Compute the discriminant and resolvent cubic @
of P. Show P and @) are both irreducible, and that the Galois group of P is Ay.

4.7.* (i) (Vandermonde determinant) Show that if Xi,..., X, are indeterminates,
then
X{L*l ngl . X:lz—l
X{172 X5172 . Xﬁ_Q
z o= I =Xy,
X, Xy - X, 1<i<j<n
1 1 . 1

(First show that each (X; — Xj) is a factor of the determinant.)

(ii) For P(X) = [[}4 (X — 2;), show that P'(z;) = [[,;(2; — z;), and deduce that its
discriminant is given by Ap = (—1)"=D/2 T, P'(z;).

(iii) Now suppose P(X) = X" + pX + ¢ = [[;,(X — z;), with n > 2. Show that

i P(z;) = (n—1 p<7 —xi)
(@) = (= 1o
and deduce that
AP — (_1)n(n—1)/2 ((1 - n)n—lpn + nnqn—l) )

4.8.* Compute the discriminant of X?" — 1 for a prime p and n > 1.



GALOIS GROUPS OVER Q

4.9. (i) Determine the Galois groups of the following cubics in Q[X]:
X3 43X, X34+27TX —4, X3 -21X 47 X34+ X2 -2X -1, X34+ X2 -2X + 1.
(ii) Determine the Galois groups of the following quartics in Q[X]:
Xt 44x? 42, Xt 492X% 44, X +4X?2 -5, Xt -2, Xt 42,
X'+ X+1, X+ X34 X2 X +1.

4.10. (i) What are the transitive subgroups of S4? Find a monic polynomial over Z of
degree 4 whose Galois group is Vi = {e, (12)(34), (13)(24), (14)(23)}.

(ii) Let P € Z[X] be monic and separable of degree n. Suppose that the Galois group of
P over Q doesn’t contain an n-cycle. Prove that the reduction of P modulo p is reducible
for every prime p (see Problem 2.13).

4.11. Compute the Galois group of X® — 2 over Q.

4.12. (i) Let p be prime. Show that any transitive subgroup G of S, contains a p-cycle.
Show that if G also contains a transposition then G' = S,.

(ii) Prove that the Galois group of X° + 2X + 6 is Ss.

(iii) Show that if P € Q[X] is an irreducible polynomial of degree p which has exactly
two non-real roots, then its Galois group is S,. Deduce that for an odd prime p and a
sufficiently large m € Z,

PX)=XP+mp*(X —1)(X =2)--- (X —p+2)—p
has Galois group S,,.

4.13.* (i) Show that the Galois group of X° —4X +2 over Q is S5, and determine its Galois
group over Q(7).
(ii) Find the Galois group of X4 — 4X + 2 over Q and over Q(i).

4.14.* Let a = vVa+by2 for a,b € Q, and let F be the splitting field for the minimal
polynomial of & over Q(p3). Determine the possible groups for Gal(F/Q(us)).

LINEAR ALGEBRAIC APPROACH

4.15. We saw that we can prove the fundamental theorem of Galois theory without us-
ing the primitive element theorem. Now deduce the primitive element theorem from the
fundamental theorem. (Use Problem 1.17.)



4.16. Let F/K be a cyclic extension of prime degree p, and o a generator of Gal(F/K).
Denote the trace of F//K by Tr/r : F' — K.

(i) Show that T i (o(z) — x) = 0 for all x € F. Deduce that if y € F' then Tp/x(y) =0
if and only if y = o(z) — « for some x € F.

(ii) (Artin-Schreier theory) Suppose that K has characteristic p. Use (i) to show that
every element of K can be written in the form o(z) — x for some x € F'. Show also that if
o(z) —x € F), then 2 —z € K. Deduce that F'/K is an Artin-Schreier extension (described
in Problem 2.5).

[This is the analogue of Kummer theory in characteristic p > 0. The natural analogue
of radical extensions in characteristic p is to consider the tower of abelian extensions which
involve Kummer and Artin-Schreier extensions.]

4.17.* (Normal Basis Theorem) In this example we show that if F'/K if a finite Galois
extension of infinite fields, then there exists y € F' such that {o(y) | 0 € Gal(F/K)} is a
basis for F'//K. (Such a basis {o(y)} is said to be a normal basis for F//K.)

(i) Let P € K[X] be a monic separable polynomial of degree n, with roots z; in a splitting
field F. Let

_ P .
Qi(X) = P (X 1) eFIX] (1<i<n).
Show that, in F[X]:
(1) Ql"‘"""Qn:l

0 (mod(P)) ifj#i

@ Qi@jz{czi (mod(P)) if j =i

(Equation (1) is the “partial fractions” decomposition of 1/P(X).)

(ii) Let F/K be a finite Galois extension and Gal(F/K) = {o1,...,0,} with o1 = id.
Let x € F be such that FF = K(x) and its minimal polynomial over K is P € K[X], and
x; = 0;(x). Let A = (a;;) be the matrix with entries a;; := 0;0,;,Q1 € F[X]. Use (1),(2) of
(i) to show that A'A = I,, (mod(P)).

(iii) Assume that K is infinite. Use (ii) to show that there exists b € K such that
det(0;0;Q1(b)) # 0. Deduce that {o1(y),...,on(y)} for y = Q1(b) is a K-basis of F.

(* optional) November 24, 2010
t.yoshida@dpmms.cam.ac.uk



