
Example Sheet 4. Lectures 19–23, Galois Theory Michaelmas 2010

Cubics, quartics and discriminants

4.1. Let P be an irreducible cubic polynomial over K with charK ̸= 2, and let δ be a
square root of the discriminant of P . Show that P remains irreducible over K(δ).

4.2. (i) Show that the discriminant of X4+pX+q is −27p4+256q3. [Hint: It is a symmetric
polynomial of degree 12, hence a linear combination of p4 and q3. By making good choices
for p, q, determine the coefficients.]

(ii) Show that the discriminant of X5 + pX + q is 44p5 + 55q4. (The discriminant of a
general quintic will have 59 terms...)

4.3. Let P be an irreducible quartic polynomial over K with charK ̸= 2, whose Galois
group is A4. Show that its splitting field can be written in the form L(

√
a,
√
b) where L/K

is a Galois cubic extension and a, b ∈ L.

4.4. Let P be an irreducible separable quartic, and Q its resolvent cubic. Show that the
discriminants of P and Q are equal.

4.5. Show that Q(µ21) has exactly three subfields of degree 6 over Q. Show that one of
them is Q(µ7), one is real, and the other is a cyclic extension K/Q(µ3). Use a suitable
Lagrange resolvent to find a ∈ Q(µ3) such that K = Q(ζ3, 3

√
a).

4.6.∗ Let P (X) = X4+8X +12 ∈ Q[X]. Compute the discriminant and resolvent cubic Q
of P . Show P and Q are both irreducible, and that the Galois group of P is A4.

4.7.∗ (i) (Vandermonde determinant) Show that if X1, . . . , Xn are indeterminates,
then ∣∣∣∣∣∣∣∣∣∣∣
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=

∏
1≤i<j≤n

(Xi −Xj).

(First show that each (Xi −Xj) is a factor of the determinant.)

(ii) For P (X) =
∏n

i=1(X − xi), show that P ′(xi) =
∏

j ̸=i(xi − xj), and deduce that its

discriminant is given by ∆P = (−1)n(n−1)/2
∏n

i=1 P
′(xi).

(iii) Now suppose P (X) = Xn + pX + q =
∏n

i=1(X − xi), with n ≥ 2. Show that

xiP
′(xi) = (n− 1)p

( −nq

(n− 1)p
− xi

)
and deduce that

∆P = (−1)n(n−1)/2
(
(1− n)n−1pn + nnqn−1

)
.

4.8.∗ Compute the discriminant of Xpn − 1 for a prime p and n ≥ 1.



Galois groups over Q

4.9. (i) Determine the Galois groups of the following cubics in Q[X]:

X3 + 3X, X3 + 27X − 4, X3 − 21X + 7, X3 +X2 − 2X − 1, X3 +X2 − 2X + 1.

(ii) Determine the Galois groups of the following quartics in Q[X]:

X4 + 4X2 + 2, X4 + 2X2 + 4, X4 + 4X2 − 5, X4 − 2, X4 + 2,

X4 +X + 1, X4 +X3 +X2 +X + 1.

4.10. (i) What are the transitive subgroups of S4? Find a monic polynomial over Z of
degree 4 whose Galois group is V4 = {e, (12)(34), (13)(24), (14)(23)}.

(ii) Let P ∈ Z[X] be monic and separable of degree n. Suppose that the Galois group of
P over Q doesn’t contain an n-cycle. Prove that the reduction of P modulo p is reducible
for every prime p (see Problem 2.13).

4.11. Compute the Galois group of X5 − 2 over Q.

4.12. (i) Let p be prime. Show that any transitive subgroup G of Sp contains a p-cycle.
Show that if G also contains a transposition then G = Sp.

(ii) Prove that the Galois group of X5 + 2X + 6 is S5.

(iii) Show that if P ∈ Q[X] is an irreducible polynomial of degree p which has exactly
two non-real roots, then its Galois group is Sp. Deduce that for an odd prime p and a
sufficiently large m ∈ Z,

P (X) = Xp +mp2(X − 1)(X − 2) · · · (X − p+ 2)− p

has Galois group Sp.

4.13.∗ (i) Show that the Galois group of X5−4X+2 over Q is S5, and determine its Galois
group over Q(i).

(ii) Find the Galois group of X4 − 4X + 2 over Q and over Q(i).

4.14.∗ Let α =
3
√

a+ b
√
2 for a, b ∈ Q, and let F be the splitting field for the minimal

polynomial of α over Q(µ3). Determine the possible groups for Gal(F/Q(µ3)).

Linear algebraic approach

4.15. We saw that we can prove the fundamental theorem of Galois theory without us-
ing the primitive element theorem. Now deduce the primitive element theorem from the
fundamental theorem. (Use Problem 1.17.)



4.16. Let F/K be a cyclic extension of prime degree p, and σ a generator of Gal(F/K).
Denote the trace of F/K by TF/K : F → K.

(i) Show that TF/K(σ(x)− x) = 0 for all x ∈ F . Deduce that if y ∈ F then TF/K(y) = 0
if and only if y = σ(x)− x for some x ∈ F .

(ii) (Artin-Schreier theory) Suppose that K has characteristic p. Use (i) to show that
every element of K can be written in the form σ(x)− x for some x ∈ F . Show also that if
σ(x)−x ∈ Fp then xp−x ∈ K. Deduce that F/K is an Artin-Schreier extension (described
in Problem 2.5).

[This is the analogue of Kummer theory in characteristic p > 0. The natural analogue
of radical extensions in characteristic p is to consider the tower of abelian extensions which
involve Kummer and Artin-Schreier extensions.]

4.17.∗ (Normal Basis Theorem) In this example we show that if F/K if a finite Galois
extension of infinite fields, then there exists y ∈ F such that {σ(y) | σ ∈ Gal(F/K)} is a
basis for F/K. (Such a basis {σ(y)} is said to be a normal basis for F/K.)

(i) Let P ∈ K[X] be a monic separable polynomial of degree n, with roots xi in a splitting
field F . Let

Qi(X) =
P (X)

P ′(xi)(X − xi)
∈ F [X] (1 ≤ i ≤ n).

Show that, in F [X]:

Q1 + · · ·+Qn = 1(1)

QiQj ≡

{
0 (mod(P )) if j ̸= i

Qi (mod(P )) if j = i
(2)

(Equation (1) is the “partial fractions” decomposition of 1/P (X).)

(ii) Let F/K be a finite Galois extension and Gal(F/K) = {σ1, . . . , σn} with σ1 = id.
Let x ∈ F be such that F = K(x) and its minimal polynomial over K is P ∈ K[X], and
xi = σi(x). Let A = (aij) be the matrix with entries aij := σiσjQ1 ∈ F [X]. Use (1),(2) of
(i) to show that AtA ≡ In (mod(P )).

(iii) Assume that K is infinite. Use (ii) to show that there exists b ∈ K such that
det(σiσjQ1(b)) ̸= 0. Deduce that {σ1(y), . . . , σn(y)} for y = Q1(b) is a K-basis of F .
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