
Example Sheet 3. Lectures 13–18, Galois Theory Michaelmas 2010

Separability

3.1. Show that every irreducible polynomial over a finite field is separable. More generally,
show that if K is a field of characteristic p > 0 such that every element of K is a p-th power,
then any irreducible polynomial over K is separable (therefore, a field of characteristic p > 0
is perfect if and only if every element is a p-th power in that field).

3.2. Let F/K be a finite extension. Show that there is a unique intermediate field K ⊂
L ⊂ F such that L/K is separable and F/L is purely inseparable, i.e. |HomL(F,E)| ≤ 1
for every extension E/L. (This L is called the separable closure of K in F .)

3.3.∗ Let K be a field of characteristic p > 0, and let x be algebraic over K. Show that x
is separable over K if and only if and only if K(x) = K(xp).

3.4.∗ (i) Let K be a field of characteristic p > 0 and c an element of K which is not a p-th
power. Let n > 0 and q = pn. Show that P (X) = Xq − c is irreducible in K[X] and is
inseparable, and that its splitting field is of the form F = K(x) with xq = c.

(ii) Let F/K be a finite, purely inseparable extension (see Problem 3.2) of characteristic
p. Show that if x ∈ F then xp

n ∈ K for some n ∈ N. Deduce that there is a chain of
subfields K = K0 ⊂ K1 ⊂ · · · ⊂ Kr = F where each extension Ki/Ki−1 is of the type
described in (i).

Galois extensions

3.5. Show that all subextensions of an abelian extension are abelian.

3.6. (i) Let K = Q(
√
2,
√
3,
√
5). Determine [K : Q] and AutQ(K).

(ii) Let K be a field with charK ̸= 2. Prove that every extension F/K with [F : K] = 4

and AutK(F ) ∼= Z/2Z× Z/2Z is biquadratic, i.e. of the form F = K(
√
a,
√
b).

3.7. Show that F = Q( 4
√
2, i) is a Galois extension of Q, and show that Gal(F/Q) is

isomorphic to D8, the dihedral group of order 8 (sometimes also denoted D4). Write down
the lattice of subgroups of D8 (be sure you have found them all!) and the corresponding
subfields of F . Which subfields are Galois over Q?

3.8. Let K be any field, and let F = K(X), a rational function field. Define the maps
σ, τ : F → F by the formulae

τf(X) = f
( 1

X

)
, σf(X) = f

(
1− 1

X

)
(∀f ∈ F ).

Show that σ, τ areK-homomorphism of F , and that they generate a subgroupG ⊂ AutK(F )
isomorphic to S3. Using Artin’s theorem, show that FG = K(g) where

g(X) =
(X2 −X + 1)3

X2(X − 1)2
∈ F.



3.9.∗ Let K be any field and F = K(X) the field of rational functions over K.

(i) Show that for every a ∈ K there is a unique σa ∈ AutK(F ) with σa(X) = X + a.

(ii) Let G = {σa | a ∈ K}. Show that G is a subgroup of AutK(F ), isomorphic to the
additive group of K. Show that if K is infinite, then FG = K.

(iii) Assume that K has characteristic p > 0, and let H = {σa | a ∈ Fp}. Show that
FH = K(Y ) with Y = Xp −X. [Hint: use Artin’s theorem or Problem 2.5.]

3.10.∗ (i) Let F/K be a finite Galois extension, and H1, H2 subgroups of Gal(F/K), with
fixed fields L1, L2. Identify the subgroup of Gal(F/K) corresponding to the field L1 ∩ L2.

(ii) Show that the fixed field of H1 ∩H2 is the composite field (see Problem 3.18 for the
definition) L1L2 of L1, L2.

(iii) Show Q(µm) ·Q(µn) = Q(µmn) if m,n are relatively prime.

3.11.∗ Determine whether the following nested radicals can be written in terms of unnested

ones, and if so, find an expression:
√

2 +
√
11,

√
6 +

√
11,

√
11 + 6

√
2,

√
11 +

√
6.

3.12.∗ Show that Q
(√

2 +
√

2 +
√
2
)
is an abelian extension of Q, and determine its Galois

group.

3.13.∗ Use (1) the structure of (Z/(m))× (Problem 2.20), (2) the Dirichlet’s theorem on
primes in arithmetic progressions, stating that if a and b are coprime positive integers,
then the set {an+b | n ∈ N} contains infinitely many primes, and (3) the structure theorem
for finite abelian groups to show that every finite abelian group is isomorphic to a quotient
of (Z/(m))× for suitable m. Deduce that every finite abelian group is the Galois group of
some Galois extension K/Q. [It is a long-standing unsolved problem to show this holds for
an arbitrary finite group.] Find an explicit x for which Q(x)/Q is abelian with Galois group
Z/23Z.

General equations and Kummer extensions

3.14. (i) Show that for any n ≥ 1 there exists a Galois extension of fields F/K with
Gal(F/K) ∼= Sn, the symmetric group of degree n.

(ii) Show that for any finite group G there exists a Galois extension whose Galois group
is isomorphic to G.

3.15. Let P ∈ Fq[X] be a polynomial over a finite field. Describe the Galois group of P
over Fq in terms of the irreducible factors of P .

3.16. Let K be a field containing a primitive n-th root of unity for some n > 1. Let a,
b ∈ K such that the polynomials P (X) = Xn−a and Q(X) = Xn− b are irreducible. Show
that P and Q have the same splitting field if and only if b = cnar for some c ∈ K and r ∈ N
with gcd(r, n) = 1.



3.17.∗ (i) Let p be a prime, and K be a field with charK ̸= p and K ′ := K(µp). For
a ∈ K, show that Xp− a is irreducible over K if and only if it is irreducible over K ′. Is the
result true if p is not assumed to be prime?

(ii) If K contains a primitive n-th root of unity, then show that Xn − a is reducible over
K if and only if a is a d-th power in K for some divisor d > 1 of n. Show that this need
not be true if K doesn’t contain a primitive n-th root of unity.

Soluble groups / Radical extensions

3.18. Let F,L be subextensions of a finite separable extension E/K. Show that if F/K
and L/K are soluble, then FL/K is also soluble. Here FL is the composite field of F
and L, i.e. the subextension of E/K generated by the elements of F,L (or, the set of all
finite sums

∑
i xiyi for xi ∈ F, yi ∈ L; see Problem 1.14).

3.19. Write cos(2π/17) explicitly in terms of radicals.

3.20.∗ (i) Let G be a finite group, and N its normal subgroup. Show that G is soluble if
and only if N and G/N are soluble.

(ii) For a group G, the derived subgroup Gder is the subgroup generated by all the
elements of the form xyx−1y−1 for x, y ∈ G. Show that Gder is normal, and that G/Gder is
abelian (it is the maximal abelian quotient of G, i.e. every group homomorphism from
G to an abelian group factors through G/Gder).

(iii) Let G0 = G, Gi = (Gi−1)
der for i ∈ N. Show that G is soluble if and only if there is

an i such that Gi = {1}.
(iv) Let G be the group of invertible n × n upper triangular matrices with entries in a

finite field K. Show that G is soluble.
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