Example Sheet 3. Lectures 13–18, Galois Theory Michaelmas 2010

SEPARABILITY

- **3.1.** Show that every irreducible polynomial over a finite field is separable. More generally, show that if K is a field of characteristic p > 0 such that every element of K is a p-th power, then any irreducible polynomial over K is separable (therefore, a field of characteristic p > 0 is perfect if and only if every element is a p-th power in that field).
- **3.2.** Let F/K be a finite extension. Show that there is a unique intermediate field $K \subset L \subset F$ such that L/K is separable and F/L is **purely inseparable**, i.e. $|\text{Hom}_L(F, E)| \leq 1$ for every extension E/L. (This L is called the **separable closure** of K in F.)
- **3.3.*** Let K be a field of characteristic p > 0, and let x be algebraic over K. Show that x is separable over K if and only if and only if $K(x) = K(x^p)$.
- **3.4.*** (i) Let K be a field of characteristic p > 0 and c an element of K which is not a p-th power. Let n > 0 and $q = p^n$. Show that $P(X) = X^q c$ is irreducible in K[X] and is inseparable, and that its splitting field is of the form F = K(x) with $x^q = c$.
- (ii) Let F/K be a finite, purely inseparable extension (see Problem 3.2) of characteristic p. Show that if $x \in F$ then $x^{p^n} \in K$ for some $n \in \mathbb{N}$. Deduce that there is a chain of subfields $K = K_0 \subset K_1 \subset \cdots \subset K_r = F$ where each extension K_i/K_{i-1} is of the type described in (i).

Galois extensions

- **3.5.** Show that all subextensions of an abelian extension are abelian.
- **3.6.** (i) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Determine $[K : \mathbb{Q}]$ and $\mathrm{Aut}_{\mathbb{Q}}(K)$.
- (ii) Let K be a field with char $K \neq 2$. Prove that every extension F/K with [F:K] = 4 and $\operatorname{Aut}_K(F) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ is **biquadratic**, i.e. of the form $F = K(\sqrt{a}, \sqrt{b})$.
- **3.7.** Show that $F = \mathbb{Q}(\sqrt[4]{2}, i)$ is a Galois extension of \mathbb{Q} , and show that $Gal(F/\mathbb{Q})$ is isomorphic to D_8 , the dihedral group of order 8 (sometimes also denoted D_4). Write down the lattice of subgroups of D_8 (be sure you have found them all!) and the corresponding subfields of F. Which subfields are Galois over \mathbb{Q} ?
- **3.8.** Let K be any field, and let F = K(X), a rational function field. Define the maps $\sigma, \tau : F \to F$ by the formulae

$$\tau f(X) = f\left(\frac{1}{X}\right), \quad \sigma f(X) = f\left(1 - \frac{1}{X}\right) \quad (\forall f \in F).$$

Show that σ, τ are K-homomorphism of F, and that they generate a subgroup $G \subset \operatorname{Aut}_K(F)$ isomorphic to S_3 . Using Artin's theorem, show that $F^G = K(g)$ where

$$g(X) = \frac{(X^2 - X + 1)^3}{X^2(X - 1)^2} \in F.$$

- **3.9.*** Let K be any field and F = K(X) the field of rational functions over K.
 - (i) Show that for every $a \in K$ there is a unique $\sigma_a \in \operatorname{Aut}_K(F)$ with $\sigma_a(X) = X + a$.
- (ii) Let $G = \{ \sigma_a \mid a \in K \}$. Show that G is a subgroup of $\operatorname{Aut}_K(F)$, isomorphic to the additive group of K. Show that if K is infinite, then $F^G = K$.
- (iii) Assume that K has characteristic p > 0, and let $H = \{\sigma_a \mid a \in \mathbb{F}_p\}$. Show that $F^H = K(Y)$ with $Y = X^p X$. [Hint: use Artin's theorem or Problem 2.5.]
- **3.10.*** (i) Let F/K be a finite Galois extension, and H_1 , H_2 subgroups of Gal(F/K), with fixed fields L_1 , L_2 . Identify the subgroup of Gal(F/K) corresponding to the field $L_1 \cap L_2$.
- (ii) Show that the fixed field of $H_1 \cap H_2$ is the composite field (see Problem 3.18 for the definition) L_1L_2 of L_1, L_2 .
 - (iii) Show $\mathbb{Q}(\boldsymbol{\mu}_m) \cdot \mathbb{Q}(\boldsymbol{\mu}_n) = \mathbb{Q}(\boldsymbol{\mu}_{mn})$ if m, n are relatively prime.
- **3.11.*** Determine whether the following nested radicals can be written in terms of unnested ones, and if so, find an expression: $\sqrt{2 + \sqrt{11}}$, $\sqrt{6 + \sqrt{11}}$, $\sqrt{11 + 6\sqrt{2}}$, $\sqrt{11 + \sqrt{6}}$.
- **3.12.*** Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}+\sqrt{2}})$ is an abelian extension of \mathbb{Q} , and determine its Galois group.
- **3.13.*** Use (1) the structure of $(\mathbb{Z}/(m))^{\times}$ (Problem 2.20), (2) the **Dirichlet's theorem on primes in arithmetic progressions**, stating that if a and b are coprime positive integers, then the set $\{an+b \mid n \in \mathbb{N}\}$ contains infinitely many primes, and (3) the structure theorem for finite abelian groups to show that every finite abelian group is isomorphic to a quotient of $(\mathbb{Z}/(m))^{\times}$ for suitable m. Deduce that every finite abelian group is the Galois group of some Galois extension K/\mathbb{Q} . [It is a long-standing unsolved problem to show this holds for an arbitrary finite group.] Find an explicit x for which $\mathbb{Q}(x)/\mathbb{Q}$ is abelian with Galois group $\mathbb{Z}/23\mathbb{Z}$.

GENERAL EQUATIONS AND KUMMER EXTENSIONS

- **3.14.** (i) Show that for any $n \geq 1$ there exists a Galois extension of fields F/K with $\operatorname{Gal}(F/K) \cong S_n$, the symmetric group of degree n.
- (ii) Show that for any finite group G there exists a Galois extension whose Galois group is isomorphic to G.
- **3.15.** Let $P \in \mathbb{F}_q[X]$ be a polynomial over a finite field. Describe the Galois group of P over \mathbb{F}_q in terms of the irreducible factors of P.
- **3.16.** Let K be a field containing a primitive n-th root of unity for some n > 1. Let a, $b \in K$ such that the polynomials $P(X) = X^n a$ and $Q(X) = X^n b$ are irreducible. Show that P and Q have the same splitting field if and only if $b = c^n a^r$ for some $c \in K$ and $c \in \mathbb{N}$ with $\gcd(r,n) = 1$.

- **3.17.*** (i) Let p be a prime, and K be a field with char $K \neq p$ and $K' := K(\mu_p)$. For $a \in K$, show that $X^p a$ is irreducible over K if and only if it is irreducible over K'. Is the result true if p is not assumed to be prime?
- (ii) If K contains a primitive n-th root of unity, then show that $X^n a$ is reducible over K if and only if a is a d-th power in K for some divisor d > 1 of n. Show that this need not be true if K doesn't contain a primitive n-th root of unity.

Soluble groups / Radical extensions

- **3.18.** Let F, L be subextensions of a finite separable extension E/K. Show that if F/K and L/K are soluble, then FL/K is also soluble. Here FL is the **composite field** of F and L, i.e. the subextension of E/K generated by the elements of F, L (or, the set of all finite sums $\sum_i x_i y_i$ for $x_i \in F$, $y_i \in L$; see Problem 1.14).
- **3.19.** Write $\cos(2\pi/17)$ explicitly in terms of radicals.
- **3.20.*** (i) Let G be a finite group, and N its normal subgroup. Show that G is soluble if and only if N and G/N are soluble.
- (ii) For a group G, the derived subgroup G^{der} is the subgroup generated by all the elements of the form $xyx^{-1}y^{-1}$ for $x, y \in G$. Show that G^{der} is normal, and that G/G^{der} is abelian (it is the **maximal abelian quotient** of G, i.e. every group homomorphism from G to an abelian group factors through G/G^{der}).
- (iii) Let $G_0 = G$, $G_i = (G_{i-1})^{\text{der}}$ for $i \in \mathbb{N}$. Show that G is soluble if and only if there is an i such that $G_i = \{1\}$.
- (iv) Let G be the group of invertible $n \times n$ upper triangular matrices with entries in a finite field K. Show that G is soluble.

(* optional) November 10, 2010

t.yoshida@dpmms.cam.ac.uk