
Example Sheet 2. Lectures 7–12, Galois Theory Michaelmas 2010

Field extensions, splitting fields

2.1. Find a splitting field K/Q for each of the following polynomials, and calculate [K : Q]
in each case:

X4 − 5X2 + 6, X4 − 7, X8 − 1, X3 − 2, X4 + 4.

2.2. Show that if F is a splitting field over K for P ∈ K[X] of degree n, then [F : K] ≤ n!.

2.3.∗ Let K be a field and c ∈ K. If m,n ∈ Z>0 are coprime, show that Xmn − c is
irreducible if and only if both Xm − c and Xn − c are irreducible. [Use the Tower Law.]

2.4.∗ (i) Let f ∈ K(X). Show that K(X) = K(f) if and only if f = (aX + b)/(cX + d) for

some a, b, c, d ∈ K with ad− bc ̸= 0. (ii) Show that Aut(K(X)/K)
∼=−→ PGL2(K).

[Hint: For f = p(X)/q(X), use Gauss’ Lemma for p(T )− fq(T ) ∈ K(f)[T ].]

Characteristic p, finite fields

2.5. Let K be a field of characteristic p > 0. Let a ∈ K, and consider the polynomial
P (X) = Xp − X − a ∈ K[X]. Show that P (X + b) = P (X) for every b ∈ Fp ⊂ K.
Now suppose that P does not have a root in K, and let F/K be a splitting field for P
over K. Show that F = K(x) for any x ∈ F with P (x) = 0, and that F/K is Galois,
with Galois group isomorphic to Z/pZ. [These cyclic extensions are called Artin-Schreier
extensions.]

2.6. Let F = Fp(X,Y ) be the field of rational functions in two variables (i.e. the field of
fractions of Fp[X,Y ]) and K the subfield Fp(X

p, Y p). Show that for any f ∈ F one has
fp ∈ K, and deduce that F/K is not a simple extension.

2.7. The polyonomials P (X) = X3 +X + 1, Q(X) = X3 +X2 + 1 are irreducible over F2.
Let K be a field obtained from F2 by adjoining a root of P , and K ′ be the field obtained
from F2 by adjoining a root of Q. Describe explicitly an isomorphism from K to K ′.

2.8. Recall the definition of the canonical isomorphism φn : Z/nZ
∼=−→ Gal(Fqn/Fq). For

every m,n with m | n, show that the following is a commutative diagram:

Z/nZ
φn

∼=
//

��

Gal(Fqn/Fq)

��
Z/mZ

φm

∼=
// Gal(Fqm/Fq)

where the right vertical map is the natural restriction σ 7−→ σ|Fqm
and the left vertical map

is the natural surjection a mod n 7−→ a mod m.



2.9. Find the Galois group of X4 +X3 + 1 (that is, the Galois group of its splitting field)
over each of the finite fields F2,F3,F4.

2.10. Let p be a prime and F = Fp(X). Let a be an integer with 1 ≤ a < p, and let
σ ∈ Aut(F ) be the unique automorphism such that σ(X) = aX. Determine the subgroup
G ⊂ Aut(F ) generated by σ, and its fixed field FG.

2.11.∗ (i) Let p be an odd prime, and let x ∈ F×
pn . Show that x ∈ Fp if and only if xp = x,

and that x+ x−1 ∈ Fp if and only if either xp = x or xp = x−1.

(ii) Apply (i) to a root of X2 + 1 in a suitable extension of Fp to show that that −1 is a
square in Fp if and only if p ≡ 1 (mod 4).

(iii) Show that x4 = −1 if and only if (x+ x−1)2 = 2. Deduce that 2 is a square in Fp if
and only if p ≡ ±1 (mod 8).

2.12.∗ Factor the following polynomials: X9 −X ∈ F3[X], X16 −X ∈ F4[X], X16 −X ∈
F8[X].

2.13.∗ Show that the minimal polynomial of
√
2+

√
3 over Q (cf. Problem 1.15) is reducible

modp for all primes p. (First show that for every p, one of 2, 3 or 6 is a square in Fp.)

2.14.∗ Write an(q) for the number of irreducible monic polynomials in Fq[X] of degree
exactly n.

(i) Show that an irreducible polynomial P ∈ Fq[X] of degree d divides Xqn − X if and
only if d divides n.

(ii) Deduce that Xqn −X is the product of all irreducible monic polynomials of degree
dividing n, and that ∑

d|n

dad(q) = qn.

(iii) Calculate the number of irreducible polynomials of degree 6 over F2.

(iv) If you know about the Möbius function µ(n), use the Möbius inversion formula to
show that

an(q) =
1

n

∑
d|n

µ(n/d)qd.

Cyclotomic fields

For n ∈ Z>0, we denote by K(µn) the n-th cyclotomic extension of K, the splitting field
of Xn − 1 over K. We denote by ζn a primitive n-th root of unity for n ∈ Z>0.

2.15. (i) Find all the subfields of Q(µ7), expressing them in the form Q(x). Which are
Galois over Q?

(ii) Find all the quadratic subfields of Q(µ15).



2.16. (i) Show that a regular 7-gon is not constructible by ruler and compass.

(ii) For which n ∈ N is it possible to trisect an angle of size 2π/n using only ruler and
compass? [Ruler and compass can only solve successive quadratic extensions.]

2.17. Let K = Q(µn) be the n-th cyclotomic field, considered as a subfield of C. Show
that under the canonical isomorphism Gal(K/Q) ∼= (Z/(n))×, the complex conjugation is
identified with the residue class of −1 (mod n). Deduce that if n ≥ 3, then [K : K ∩R] = 2
and show that K ∩ R = Q(ζn + ζ−1

n ) = Q(cos 2π/n).

2.18.∗ (i) Let p be an odd prime. Show that if r ∈ Z then
∑

0≤s<p ζ
rs
p equals p if r ≡ 0

(mod p) and equals 0 otherwise.

(ii) Let τ =
∑

0≤n<p ζ
n2

p . Show that ττ = p. Show also that τ is real if −1 is a square

mod p, and otherwise τ is purely imaginary (i.e. τ/i ∈ R).
(iii) Let F = Q(µp). Show that F has a unique subfield K which is quadratic over Q,

and that K = Q(
√
εp) where ε = (−1)(p−1)/2.

(iv) Show that Q(µm) ⊂ Q(µn) if m|n. Deduce that if 0 ̸= m ∈ Z then Q(
√
m) is a

subfield of Q(µ4|m|). [This is a simple case of the Kronecker-Weber Theorem.]

2.19.∗ Let Φn ∈ Z[X] denote the n-th cyclotomic polynomial. Show that:

(i) If n is odd and n ̸= 1 then Φ2n(X) = Φn(−X).

(ii) If p is a prime dividing n then Φnp(X) = Φn(X
p).

(iii) If p and q are distinct primes then the nonzero coefficients of Φpq are alternately +1
and −1. [Hint: First show that if 1/(1−Xp)(1−Xq) is expanded as a power series in X,
then the coefficients of Xm with m < pq are either 0 or 1.]

(iv) If n is not divisible by at least three distinct odd primes then the coefficients of Φn

are −1, 0 or 1.

(v) Φ3×5×7 has at least one coefficient which is not −1, 0 or 1.

2.20.∗ In this question we determine the structure of the groups (Z/(m))×.

(i) Let p be an odd prime. Show that (1 + p)p
n−2 ≡ 1 + pn−1 (mod pn) for every n ≥ 2.

Deduce that 1 + p has order pn−1 in (Z/(pn))×.
(ii) If b ∈ Z with (p, b) = 1 and b has order p− 1 in (Z/(p))× and n ≥ 1, show that bp

n−1

has order p−1 in (Z/(pn))×. Deduce that (Z/(pn))× is cyclic for n ≥ 1 and p an odd prime.

(iii) Show that 52
n−3 ≡ 1 + 2n−1 (mod 2n) for every n ≥ 3. Deduce that (Z/(2n))× is

generated by 5 and −1, and is isomorphic to Z/2n−2Z× Z/2Z, for any n ≥ 2.

(iv) Use the Chinese Remainder Theorem to deduce the structure of (Z/(m))× in general.
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