
EXAMPLE SHEET 4 (LECTURES 19–23)

GALOIS THEORY MICHAELMAS 2009

Soluble groups / Radical extensions

1. (i) Let G be a finite group, and N its normal subgroup. Show that G is soluble if
and only if N and G/N are soluble.

(ii) For a group G, the derived subgroup Gder is the subgroup generated by all the
elements of the form xyx−1y−1 for x, y ∈ G. Show that Gder is normal, and that G/Gder

is abelian (it is the maximal abelian quotient of G, i.e. every group homomorphism
from G to an abelian group factors through G/Gder).

(iii) Let G0 = G, Gi = (Gi−1)
der for i ∈ N. Show that G is soluble if and only if there

is an i such that Gi = 1.

(iv) Let G be the group of invertible n× n upper triangular matrices with entries in a
finite field K. Show that G is soluble.

2. Show that if E/K,F/K are two soluble extensions, their composite field EF/K is
also soluble.

3. Write cos(2π/17) explicitly in terms of radicals.

Discriminants, cubics and quartics

4. (i) Show that the discriminant of X4 + pX + q is −27p4 + 256q3. [Hint: It is
a symmetric polynomial of degree 12, hence a linear combination of p4 and q3. By
making good choices for p, q, determine the coefficients.]

(ii) Show that the discriminant of X5 + pX + q is 44p5 + 55q4. (The discriminant of a
general quintic will have 59 terms...)

5. (i) (Vandermonde determinant) Show that if X1, . . . , Xn are indeterminates,
then ∣∣∣∣∣∣∣∣∣∣∣
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=

∏
1≤i<j≤n

(Xi −Xj).

(First show that each (Xi −Xj) is a factor of the determinant.)

(ii) For P (X) =
∏n

i=1(X − xi), show that P ′(xi) =
∏

j ̸=i(xi − xj), and deduce that its

discriminant is given by ∆P = (−1)n(n−1)/2
∏n

i=1 P
′(xi).
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(iii) Now suppose P (X) = Xn + pX + q =
∏n

i=1(X − xi), with n ≥ 2. Show that

xiP
′(xi) = (n− 1)p

( −nq

(n− 1)p
− xi

)
and deduce that

∆P = (−1)n(n−1)/2
(
(1− n)n−1pn + nnqn−1

)
.

6. Compute the discriminant of Xpn − 1.

7. Let P be an irreducible cubic polynomial over K with charK ̸= 2, and let δ be a
square root of the discriminant of P . Show that P remains irreducible over K(δ).

8. Let P be an irreducible quartic polynomial over K with charK ̸= 2, whose Galois
group is A4. Show that its splitting field can be written in the form L(

√
a,
√
b) where

L/K is a Galois cubic extension and a, b ∈ L.

9. Let P be an irreducible separable quartic, and Q its resolvant cubic. Show that the
discriminants of P and Q are equal.

10. Let P (X) = X4+8X+12 ∈ Q[X]. Compute the discriminant and resolvant cubic
Q of P . Show P and Q are both irreducible, and that the Galois group of P is A4.

Galois groups over Q
11. (i) Determine the Galois groups of the following cubics in Q[X]:

X3 + 3X, X3 + 27X − 4, X3 − 21X + 7, X3 +X2 − 2X − 1, X3 +X2 − 2X + 1.

(ii) Determine the Galois groups of the following quartics in Q[X]:

X4 + 4X2 + 2, X4 + 2X2 + 4, X4 + 4X2 − 5, X4 − 2, X4 + 2,

X4 +X + 1, X4 +X3 +X2 +X + 1.

12. (i) Show that the Galois group of X5 − 4X + 2 over Q is S5, and determine its
Galois group over Q(i).

(ii) Find the Galois group of X4 − 4X + 2 over Q and over Q(i).

13. Determine whether the following nested radicals can be written in terms of unnested

ones, and if so, find an expression:
√

2 +
√
11,

√
6 +

√
11,

√
11 + 6

√
2,

√
11 +

√
6.

14. Show that Q(µ21) has exactly three subfields of degree 6 over Q. Show that one of
them is Q(µ7), one is real, and the other is a cyclic extension K/Q(µ3). Use a suitable
Lagrange resolvent to find a ∈ Q(µ3) such that K = Q(ζ3, 3

√
a).

15. Let α =
3
√

a+ b
√
2 for a, b ∈ Q, and let F be the splitting field for the minimal

polynomial of α over Q(µ3). Determine the possible groups for Gal(F/Q(µ3)).
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Trace & norm

16. We saw that we can prove the fundamental theorem of Galois theory without using
the primitive element theorem. Now deduce the primitive element theorem from the
fundamental theorem. (Use Example Sheet 2, Problem 3.)

17. Let F/K be a cyclic extension of prime degree p, and σ a generator of Gal(F/K).

(i) Show that TF/K(σ(x)−x) = 0 for all x ∈ F . Deduce that if y ∈ F then TF/K(y) = 0
if and only if y = σ(x)− x for some x ∈ F .

(ii) (Artin-Schreier theory) Suppose that K has characteristic p. Use (i) to show
that every element of K can be written in the form σ(x) − x for some x ∈ F . Show
also that if σ(x) − x ∈ Fp then xp − x ∈ K. Deduce that F/K is an extension of the
type described in the Example Sheet 2, Problem 1.

[This is the analogue of Kummer theory in characteristic p > 0. The natural analogue
of radical extensions in characteristic p is to consider the tower of abelian extensions
which involve Kummer and Artin-Schreier extensions.]

18. (Normal Basis Theorem) In this example we show that if F/K if a finite Galois
extension of infinite fields, then there exists y ∈ F such that {σ(y) | σ ∈ Gal(F/K)} is
a basis for F/K. (Such a basis {σ(y)} is said to be a normal basis for F/K.)

(i) Let P ∈ K[X] be a monic separable polynomial of degree n, with roots xi in a
splitting field F . Let

Qi(X) =
P (X)

P ′(xi)(X − xi)
∈ F [X] (1 ≤ i ≤ n).

Show that, in F [X]:

Q1 + · · ·+Qn = 1(1)

QiQj ≡

{
0 (mod(P )) if j ̸= i

Qi (mod(P )) if j = i
(2)

(Equation (1) is the “partial fractions” decomposition of 1/P (X).)

(ii) Let F/K be a finite Galois extension and Gal(F/K) = {σ1, . . . , σn} with σ1 = id.
Let x ∈ F be such that F = K(x) and its minimal polynomial over K is P ∈ K[X],
and xi = σi(x). Let A = (aij) be the matrix with entries aij := σiσjQ1 ∈ F [X]. Use
(1),(2) of (i) to show that AtA ≡ In (mod(P )).

(iii) Assume that K is infinite. Use (ii) to show that there exists b ∈ K such that
det(σiσjQ1(b)) ̸= 0. Deduce that {σ1(y), . . . , σn(y)} for y = Q1(b) is a K-basis of F .
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