EXAMPLE SHEET 3 (LECTURES 13–18) GALOIS THEORY MICHAELMAS 2009

Separability

1. Show that every irreducible polynomial over a finite field is separable. More generally, show that if K is a field of characteristic p > 0 such that every element of K is a p-th power, then any irreducible polynomial over K is separable (therefore, a field of characteristic p > 0 is perfect if and only if every element is a p-th power in that field).

2. Let K be a field of characteristic p > 0, and let x be algebraic over K. Show that x is separable over K if and only if $K(x) = K(x^p)$.

3. (i) Let K be a field of characteristic p > 0 and c an element of K which is not a p-th power. Let n > 0 and $q = p^n$. Show that $P(X) = X^q - c$ is irreducible in K[X] and is inseparable, and that its splitting field is of the form F = K(x) with $x^q = c$.

(ii) Let F/K be a finite, **purely inseparable** extension (i.e. $|\text{Hom}_K(F, E)| \leq 1$ for every extension E/K) of characteristic p. Show that if $x \in F$ then $x^{p^n} \in K$ for some $n \in \mathbb{N}$. Deduce that there is a chain of subfields $K = K_0 \subset K_1 \subset \cdots \subset K_r = F$ where each extension K_i/K_{i-1} is of the type described in (i).

4. Let F/K be a finite extension. Show that there is a unique intermediate field $K \subset L \subset F$ such that L/K is separable and F/L is purely inseparable. (This K' is called the **separable closure** of K in L.)

Galois extensions

5. (i) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Determine $[K : \mathbb{Q}]$ and $\operatorname{Aut}_{\mathbb{Q}}(K)$.

(ii) Let K be a field with char $K \neq 2$. Prove that every extension F/K with [F:K] = 4 and $\operatorname{Aut}_K(F) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ is biquadratic, i.e. of the form $F = K(\sqrt{a}, \sqrt{b})$.

6. Show that $F = \mathbb{Q}(\sqrt[4]{2}, i)$ is a Galois extension of \mathbb{Q} , and show that $\operatorname{Gal}(F/\mathbb{Q})$ is isomorphic to D_8 , the dihedral group of order 8 (sometimes also denoted D_4). Write down the lattice of subgroups of D_8 (be sure you have found them all!) and the corresponding subfields of F. Which subfields are Galois over \mathbb{Q} ?

7. Show that all subextensions of an abelian extension are abelian.

8. (Artin's Theorem) Show that a finite extension F/K is Galois if and only if $K = F^G$ for some subgroup $G \subset \operatorname{Aut}_K(F)$. (In particular, the latter condition implies $G = \operatorname{Aut}_K(F)$ and [F:K] = |G| by the fundamental theorem.)

Date: March 15, 2010.

[Hint: for every $x \in F$, construct a separable polynomial in $F^G[X]$ of degree $\leq |G|$, whose roots lie in F and are distinct, and is divisible by the minimal polynomial of x over F^G .]

9. Let $P \in \mathbb{F}_q[X]$ be a polynomial over a finite field. Describe the Galois group of P over \mathbb{F}_q in terms of the irreducible factors of P.

10. (i) Let F/K be a finite Galois extension, and H_1 , H_2 subgroups of Gal(F/K), with fixed fields L_1 , L_2 . Identify the subgroup of Gal(F/K) corresponding to the field $L_1 \cap L_2$.

(ii) Show that the fixed field of $H_1 \cap H_2$ is the **composite field** L_1L_2 of L_1, L_2 , i.e. the subextension of F/K generated by the elements of L_1, L_2 (or, the set of all finite sums $\sum_i x_i y_i$ for $x_i \in L_1$, $y_i \in L_2$; see Example Sheet 1, Problem 13).

(iii) Show $\mathbb{Q}(\boldsymbol{\mu}_m) \cdot \mathbb{Q}(\boldsymbol{\mu}_n) = \mathbb{Q}(\boldsymbol{\mu}_{mn})$ if m, n are relatively prime.

11. Let K be any field and F = K(X) the field of rational functions over K.

(i) Show that for every $a \in K$ there is a unique $\sigma_a \in \operatorname{Aut}_K(F)$ with $\sigma_a(X) = X + a$.

(ii) Let $G = \{\sigma_a \mid a \in K\}$. Show that G is a subgroup of $\operatorname{Aut}_K(F)$, isomorphic to the additive group of K. Show that if K is infinite, then $F^G = K$.

(iii) Assume that K has characteristic p > 0, and let $H = \{\sigma_a \mid a \in \mathbb{F}_p\}$. Show that $F^H = K(Y)$ with $Y = X^p - X$. [Hint: use Artin's theorem or Example Sheet 2, Problem 1.]

12. Let K be any field, and let F = K(X), a rational function field. Define the maps $\sigma, \tau: F \to F$ by the formulae

$$\tau f(X) = f\left(\frac{1}{X}\right), \quad \sigma f(X) = f\left(1 - \frac{1}{X}\right) \quad (\forall f \in F).$$

Show that σ, τ are K-homomorphism of F, and that they generate a subgroup $G \subset \operatorname{Aut}_K(F)$ isomorphic to S_3 . Show that $F^G = K(g)$ where

$$g(X) = \frac{(X^2 - X + 1)^3}{X^2(X - 1)^2} \in F.$$

13. Show that $\mathbb{Q}(\sqrt{2+\sqrt{2+\sqrt{2}}})$ is an abelian extension of \mathbb{Q} , and determine its Galois group.

14. Use (1) the structure of $(\mathbb{Z}/(m))^{\times}$ (Example Sheet 2, Problem 19), (2) the **Dirichlet's theorem on primes in arithmetic progressions**, stating that if a and b are coprime positive integers, then the set $\{an+b \mid n \in \mathbb{N}\}$ contains infinitely many primes, and (3) the structure theorem for finite abelian groups to show that every finite abelian group is isomorphic to a quotient of $(\mathbb{Z}/(m))^{\times}$ for suitable m. Deduce that every finite abelian group is the Galois group of some Galois extension K/\mathbb{Q} . [It is a long-standing unsolved problem to show this holds for an arbitrary finite group.] Find an explicit xfor which $\mathbb{Q}(x)/\mathbb{Q}$ is abelian with Galois group $\mathbb{Z}/23\mathbb{Z}$.

 $\mathbf{2}$

EXAMPLE SHEET 3

General equations and Kummer extensions

15. (i) Show that for any $n \ge 1$ there exists a Galois extension of fields F/K with $\operatorname{Gal}(F/K) \cong S_n$, the symmetric group of degree n.

(ii) Show that for any finite group G there exists a Galois extension whose Galois group is isomorphic to G.

16. Let K be a field containing a primitive n-th root of unity for some n > 1. Let a, $b \in K$ such that the polynomials $P(X) = X^n - a$ and $Q(X) = X^n - b$ are irreducible. Show that P and Q have the same splitting field if and only if $b = c^n a^r$ for some $c \in K$ and $r \in \mathbb{N}$ with gcd(r, n) = 1.

17. (i) Let p be a prime, and K be a field with char $K \neq p$ and $K' := K(\mu_p)$. Fora $a \in K$, show that $X^p - a$ is irreducible over K if and only if it is irreducible over K'. Is the result true if p is not assumed to be prime?

(ii) If K contains a primitive n-th root of unity, then we know that $X^n - a$ is reducible over K if and only if a is a d-th power in K for some divisor d > 1 of n. Show that this need not be true if K doesn't contain a primitive n-th root of unity.

18. Compute the Galois group of $X^5 - 2$ over \mathbb{Q} .

Galois groups over \mathbb{Q}

19. (i) What are the transitive subgroups of S_4 ? Find a monic polynomial over \mathbb{Z} of degree 4 whose Galois group is $V_4 = \{e, (12)(34), (13)(24), (14)(23)\}.$

(ii) Let $P \in \mathbb{Z}[X]$ be monic and separable of degree *n*. Suppose that the Galois group of *P* over \mathbb{Q} doesn't contain an *n*-cycle. Prove that the reduction of *P* modulo *p* is reducible for every prime *p*. (See Example Sheet 2, Problem 10.)

20. (i) Let p be prime. Show that any transitive subgroup G of S_p contains a p-cycle. Show that if G also contains a transposition then $G = S_p$.

(ii) Prove that the Galois group of $X^5 + 2X + 6$ is S_5 .

(iii) Show that if $P \in \mathbb{Q}[X]$ is an irreducible polynomial of degree p which has exactly two non-real roots, then its Galois group is S_p . Deduce that for an odd prime p and a sufficiently large $m \in \mathbb{Z}$,

$$P(X) = X^{p} + mp^{2}(X-1)(X-2)\cdots(X-p+2) - p$$

has Galois group S_p .

E-mail address: t.yoshida@dpmms.cam.ac.uk