
EXAMPLE SHEET 3 (LECTURES 13–18)

GALOIS THEORY MICHAELMAS 2009

Separability

1. Show that every irreducible polynomial over a finite field is separable. More gener-
ally, show that if K is a field of characteristic p > 0 such that every element of K is a
p-th power, then any irreducible polynomial over K is separable (therefore, a field of
characteristic p > 0 is perfect if and only if every element is a p-th power in that field).

2. Let K be a field of characteristic p > 0, and let x be algebraic over K. Show that
x is separable over K if and only if K(x) = K(xp).

3. (i) Let K be a field of characteristic p > 0 and c an element of K which is not a
p-th power. Let n > 0 and q = pn. Show that P (X) = Xq − c is irreducible in K[X]
and is inseparable, and that its splitting field is of the form F = K(x) with xq = c.

(ii) Let F/K be a finite, purely inseparable extension (i.e. |HomK(F,E)| ≤ 1 for
every extension E/K) of characteristic p. Show that if x ∈ F then xp

n ∈ K for some
n ∈ N. Deduce that there is a chain of subfields K = K0 ⊂ K1 ⊂ · · · ⊂ Kr = F where
each extension Ki/Ki−1 is of the type described in (i).

4. Let F/K be a finite extension. Show that there is a unique intermediate field
K ⊂ L ⊂ F such that L/K is separable and F/L is purely inseparable. (This K ′ is
called the separable closure of K in L.)

Galois extensions

5. (i) Let K = Q(
√
2,
√
3,
√
5). Determine [K : Q] and AutQ(K).

(ii) Let K be a field with charK ̸= 2. Prove that every extension F/K with [F : K] = 4

and AutK(F ) ∼= Z/2Z× Z/2Z is biquadratic, i.e. of the form F = K(
√
a,
√
b).

6. Show that F = Q( 4
√
2, i) is a Galois extension of Q, and show that Gal(F/Q) is

isomorphic to D8, the dihedral group of order 8 (sometimes also denoted D4). Write
down the lattice of subgroups of D8 (be sure you have found them all!) and the
corresponding subfields of F . Which subfields are Galois over Q?

7. Show that all subextensions of an abelian extension are abelian.

8. (Artin’s Theorem) Show that a finite extension F/K is Galois if and only if
K = FG for some subgroup G ⊂ AutK(F ). (In particular, the latter condition implies
G = AutK(F ) and [F : K] = |G| by the fundamental theorem.)
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[Hint: for every x ∈ F , construct a separable polynomial in FG[X] of degree ≤ |G|,
whose roots lie in F and are distinct, and is divisible by the minimal polynomial of x
over FG.]

9. Let P ∈ Fq[X] be a polynomial over a finite field. Describe the Galois group of P
over Fq in terms of the irreducible factors of P .

10. (i) Let F/K be a finite Galois extension, and H1, H2 subgroups of Gal(F/K),
with fixed fields L1, L2. Identify the subgroup of Gal(F/K) corresponding to the field
L1 ∩ L2.

(ii) Show that the fixed field of H1 ∩ H2 is the composite field L1L2 of L1, L2, i.e.
the subextension of F/K generated by the elements of L1, L2 (or, the set of all finite
sums

∑
i xiyi for xi ∈ L1, yi ∈ L2; see Example Sheet 1, Problem 13).

(iii) Show Q(µm) ·Q(µn) = Q(µmn) if m,n are relatively prime.

11. Let K be any field and F = K(X) the field of rational functions over K.

(i) Show that for every a ∈ K there is a unique σa ∈ AutK(F ) with σa(X) = X + a.

(ii) Let G = {σa | a ∈ K}. Show that G is a subgroup of AutK(F ), isomorphic to the
additive group of K. Show that if K is infinite, then FG = K.

(iii) Assume that K has characteristic p > 0, and let H = {σa | a ∈ Fp}. Show that
FH = K(Y ) with Y = Xp − X. [Hint: use Artin’s theorem or Example Sheet 2,
Problem 1.]

12. Let K be any field, and let F = K(X), a rational function field. Define the maps
σ, τ : F → F by the formulae

τf(X) = f
( 1

X

)
, σf(X) = f

(
1− 1

X

)
(∀f ∈ F ).

Show that σ, τ are K-homomorphism of F , and that they generate a subgroup G ⊂
AutK(F ) isomorphic to S3. Show that FG = K(g) where

g(X) =
(X2 −X + 1)3

X2(X − 1)2
∈ F.

13. Show that Q(

√
2 +

√
2 +

√
2) is an abelian extension of Q, and determine its

Galois group.

14. Use (1) the structure of (Z/(m))× (Example Sheet 2, Problem 19), (2) the Dirich-
let’s theorem on primes in arithmetic progressions, stating that if a and b are
coprime positive integers, then the set {an+b | n ∈ N} contains infinitely many primes,
and (3) the structure theorem for finite abelian groups to show that every finite abelian
group is isomorphic to a quotient of (Z/(m))× for suitable m. Deduce that every finite
abelian group is the Galois group of some Galois extension K/Q. [It is a long-standing
unsolved problem to show this holds for an arbitrary finite group.] Find an explicit x
for which Q(x)/Q is abelian with Galois group Z/23Z.
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General equations and Kummer extensions

15. (i) Show that for any n ≥ 1 there exists a Galois extension of fields F/K with
Gal(F/K) ∼= Sn, the symmetric group of degree n.

(ii) Show that for any finite group G there exists a Galois extension whose Galois group
is isomorphic to G.

16. Let K be a field containing a primitive n-th root of unity for some n > 1. Let a,
b ∈ K such that the polynomials P (X) = Xn − a and Q(X) = Xn − b are irreducible.
Show that P and Q have the same splitting field if and only if b = cnar for some c ∈ K
and r ∈ N with gcd(r, n) = 1.

17. (i) Let p be a prime, and K be a field with charK ̸= p and K ′ := K(µp). Fora
a ∈ K, show that Xp − a is irreducible over K if and only if it is irreducible over K ′.
Is the result true if p is not assumed to be prime?

(ii) If K contains a primitive n-th root of unity, then we know that Xn− a is reducible
over K if and only if a is a d-th power in K for some divisor d > 1 of n. Show that
this need not be true if K doesn’t contain a primitive n-th root of unity.

18. Compute the Galois group of X5 − 2 over Q.

Galois groups over Q
19. (i) What are the transitive subgroups of S4? Find a monic polynomial over Z of
degree 4 whose Galois group is V4 = {e, (12)(34), (13)(24), (14)(23)}.
(ii) Let P ∈ Z[X] be monic and separable of degree n. Suppose that the Galois group
of P over Q doesn’t contain an n-cycle. Prove that the reduction of P modulo p is
reducible for every prime p. (See Example Sheet 2, Problem 10.)

20. (i) Let p be prime. Show that any transitive subgroup G of Sp contains a p-cycle.
Show that if G also contains a transposition then G = Sp.

(ii) Prove that the Galois group of X5 + 2X + 6 is S5.

(iii) Show that if P ∈ Q[X] is an irreducible polynomial of degree p which has exactly
two non-real roots, then its Galois group is Sp. Deduce that for an odd prime p and a
sufficiently large m ∈ Z,

P (X) = Xp +mp2(X − 1)(X − 2) · · · (X − p+ 2)− p

has Galois group Sp.

E-mail address: t.yoshida@dpmms.cam.ac.uk


