
EXAMPLE SHEET 2 (LECTURES 7–12)

GALOIS THEORY MICHAELMAS 2009

Fields and automorphisms

1. Let K be a field of characteristic p > 0. Let a ∈ K, and let P ∈ K[X] be the
polynomial P (X) = Xp −X − a. Show that P (X + b) = P (X) for every b ∈ Fp ⊂ K.
Now suppose that P does not have a root in K, and let L/K be a splitting field for
P over K. Show that L = K(x) for any x ∈ L with P (x) = 0, and that L/K is
Galois, with Galois group isomorphic to Z/pZ. (These cyclic extensions are called
Artin-Schreier extensions.)

2. Let K be a field and c ∈ K. If m,n ∈ Z>0 are coprime, show that Xmn − c is
irreducible if and only if both Xm−c and Xn−c are irreducible. (Use the Tower Law.)

3. (i) Let x be algebraic overK. Show that there is only a finite number of intermediate
fields K ⊂ K ′ ⊂ K(x). [Hint: Consider the minimal polynomial of x over K ′.]

(ii) Show that if L/K is a finite extension of infinite fields for which there exist only
finitely many intermediate subfields K ⊂ K ′ ⊂ L, then L = K(x) for some x ∈ L.

4. Let L = Fp(X,Y ) be the field of rational functions in two variables (i.e. the field of
fractions of Fp[X,Y ]) and K the subfield Fp(X

p, Y p). Show that for any f ∈ L one has
fp ∈ K, and deduce that L/K is not a simple extension.

5. (i) Let f ∈ K(X). Show that K(X) = K(f) if and only if f = (aX + b)/(cX + d)
for some a, b, c, d ∈ K with ad− bc ̸= 0.

(ii) Show that Aut(K(X)/K) ≃ PGL2(K).

6. Let p be a prime and L = Fp(X). Let a be an integer with 1 ≤ a < p, and
let σ ∈ Aut(L) be the unique automorphism such that σ(X) = aX. Determine the
subgroup G ⊂ Aut(L) generated by σ, and its fixed field LG.

Finite fields

7. The polyonomials P (X) = X3 +X + 1, Q(X) = X3 +X2 + 1 are irreducible over
F2. Let K be a field obtained from F2 by adjoining a root of P , and L be the field
obtained from F2 by adjoining a root of Q. Describe explicitly an isomorphism from
K to L.

8. Factor the following polynomials: X9 −X ∈ F3[X], X16 −X ∈ F4[X], X16 −X ∈
F8[X].
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9. (i) Let p be an odd prime, and let x ∈ F×
pn . Show that x ∈ Fp if and only if xp = x,

and that x+ x−1 ∈ Fp if and only if either xp = x or xp = x−1.

(ii) Apply (i) to a root of X2 + 1 in a suitable extension of Fp to show that that −1 is
a square in Fp if and only if p ≡ 1 (mod 4).

(iii) Show that x4 = −1 if and only if (x+ x−1)2 = 2. Deduce that 2 is a square in Fp

if and only if p ≡ ±1 (mod 8).

10. Write down the minimal polynomial of
√
2+

√
3 over Q. Show that it is reducible

modp for all primes p. (First show that for every p, one of 2, 3 or 6 is a square in Fp.)

11. Find the Galois group of X4 +X3 + 1 (that is, the Galois group of the splitting
field) over each of the finite fields F2,F3,F4.

12. Recall the definition of the canonical isomorphism φn : Z/nZ
∼=−→ Gal(Fqn/Fq).

For every m,n with m | n, show that the following is a commutative diagram:

Z/nZ
φn

∼=
//

��

Gal(Fqn/Fq)

��
Z/mZ

φm

∼=
// Gal(Fqm/Fq)

where the right vertical map is the natural restriction σ 7−→ σ|Fqm
and the left vertical

map is the natural surjection a mod n 7−→ a mod m.

13. Write an(q) for the number of irreducible monic polynomials in Fq[X] of degree
exactly n.

(i) Show that an irreducible polynomial P ∈ Fq[X] of degree d divides Xqn −X if and
only if d divides n.

(ii) Deduce that Xqn −X is the product of all irreducible monic polynomials of degree
dividing n, and that ∑

d|n

dad(q) = qn.

(iii) Calculate the number of irreducible polynomials of degree 6 over F2.

(iv) If you know about the Möbius function µ(n), use the Möbius inversion formula to
show that

an(q) =
1

n

∑
d|n

µ(n/d)qd.

Cyclotomic fields

For n ∈ Z>0, we denote by K(µn) the n-th cyclotomic extension of K, the splitting
field of Xn − 1 over K. We denote by ζn a primitive n-th root of unity for n ∈ Z>0.
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14. (i) Find all the subfields of Q(µ7), expressing them in the form Q(x). Which are
Galois over Q?

(ii) Find the quadratic subfields of Q(µ15).

15. (i) Show that a regular 7-gon is not constructible by ruler and compass.

(ii) For which n ∈ N is it possible to trisect an angle of size 2π/n using only ruler and
compass?

16. Let K = Q(µn) be the n-th cyclotomic field, considered as a subfield of C. Show
that under the canonical isomorphism Gal(K/Q) ∼= (Z/(n))×, the complex conjugation
is identified with the residue class of −1 (mod n). Deduce that if n ≥ 3, then [K :
K ∩ R] = 2 and show that K ∩ R = Q(ζn + ζ−1

n ) = Q(cos 2π/n).

17. (i) Let p be an odd prime. Show that if r ∈ Z then
∑

0≤s<p ζ
rs
p equals p if r ≡ 0

(mod p) and equals 0 otherwise.

(ii) Let τ =
∑

0≤n<p ζ
n2

p . Show that ττ = p. Show also that τ is real if −1 is a square

mod p, and otherwise τ is purely imaginary (i.e. τ/i ∈ R).
(iii) Let L = Q(µp). Show that L has a unique subfield K which is quadratic over Q,

and that K = Q(
√
εp) where ε = (−1)(p−1)/2.

(iv) Show that Q(µm) ⊂ Q(µn) if m|n. Deduce that if 0 ̸= m ∈ Z then Q(
√
m) is a

subfield of Q(µ4|m|). [This is a simple case of the Kronecker-Weber Theorem.]

18. Let Φn ∈ Z[X] denote the n-th cyclotomic polynomial. Show that:

(i) If n is odd then Φ2n(X) = Φn(−X).

(ii) If p is a prime dividing n then Φnp(X) = Φn(X
p).

(iii) If p and q are distinct primes then the nonzero coefficients of Φpq are alternately
+1 and −1. [Hint: First show that if 1/(1−Xp)(1−Xq) is expanded as a power series
in X, then the coefficients of Xm with m < pq are either 0 or 1.]

(iv) If n is not divisible by at least three distinct odd primes then the coefficients of
Φn are −1, 0 or 1.

(v) Φ3×5×7 has at least one coefficient which is not −1, 0 or 1.

19. In this question we determine the structure of the groups (Z/(m))×.

(i) Let p be an odd prime. Show that (1+p)p
n−2 ≡ 1+pn−1 (mod pn) for every n ≥ 2.

Deduce that 1 + p has order pn−1 in (Z/(pn))×.
(ii) If b ∈ Z with (p, b) = 1 and b has order p − 1 in (Z/(p))× and n ≥ 1, show that

bp
n−1

has order p− 1 in (Z/(pn))×. Deduce that (Z/(pn))× is cyclic for n ≥ 1 and p an
odd prime.

(iii) Show that 52
n−3 ≡ 1 + 2n−1 (mod 2n) for every n ≥ 3. Deduce that (Z/(2n))× is

generated by 5 and −1, and is isomorphic to Z/2n−2Z× Z/2Z, for any n ≥ 2.
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(iv) Use the Chinese Remainder Theorem to deduce the structure of (Z/(m))× in
general.

E-mail address: t.yoshida@dpmms.cam.ac.uk


