Example sheet 1, Galois Theory, 2007

- **1.** Find the greatest common divisors of the polynomials $f = X^3 3$ and $g = X^2 4$ in $\mathbb{Q}[X]$ and in $\mathbb{F}_5[X]$, expressing them in the form af + bg for polynomials a, b.
- **2.** (Quadratic extensions) Let L/K be an extension of degree 2. Show that if the characteristic of K is not 2, then $L = K(\alpha)$ for some $\alpha \in L$ with $\alpha^2 \in K$.

Show that if the characteristic is 2, then either $L = K(\alpha)$ with $\alpha^2 \in K$, or $L = K(\alpha)$ with $\alpha^2 + \alpha \in K$.

- **3.** (i) Let L/K be a finite extension whose degree is prime. Show that there is no intermediate extension $L \supsetneq K' \supsetneq K$.
- (ii) Let α be algebraic over K of odd degree. Show that $K(\alpha) = K(\alpha^2)$.
- **4.** Let L/K be an extension and $\alpha, \beta \in L$. Show that if $\alpha + \beta$ and $\alpha\beta$ are algebraic over K, then α and β are also algebraic over K.
- **5.** Let $L = K(\alpha, \beta)$, with $\deg_K \alpha = m$, $\deg_K \beta = n$, and $\gcd(m, n) = 1$. Show that [L : K] = mn.
- **6.** Find the minimal polynomials over \mathbb{Q} of the complex numbers $\sqrt[5]{3}$, $i + \sqrt{2}$, $\sin(2\pi/5)$ and $e^{\pi i/6} \sqrt{3}$.
- 7. Let α have minimal polynomial $X^3 + X^2 2X + 1$ over \mathbb{Q} . Express $(1 \alpha^2)^{-1}$ as a linear combination of 1, α and α^2 . Justify the assertion that the cubic is irreducible over \mathbb{Q} .
- **8.** Let L/K be a finite extension and $f \in K[X]$ an irreducible polynomial of degree d > 1. Show that if d and [L:K] are coprime, f has no roots in L.
- **9.** (i) Let K be a field, and $r = p/q \in K(X)$ a non-constant rational function. Find a polynomial in K(r)[T] which has X as a root.
- (ii) Let L be a subfield of K(X) containing K. Show that either K(X)/L is finite, or L=K. Deduce that the only elements of K(X) which are algebraic over K are constants.
- **10.** Find a splitting field K/\mathbb{Q} for each of the following polynomials, and calculate $[K:\mathbb{Q}]$ in each case:

$$X^4 - 5X^2 + 6$$
, $X^4 - 7$, $X^8 - 1$, $X^3 - 2$, $X^4 + 4$.

- **11.** Show that if L is a splitting field for a polynomial in K[X] of degree n, then $[L:K] \leq n!$.
- 12. Write down the minimum polynomial for $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} . Show that it is reducible mod p, for all primes p.
- 13. Show that an algebraic extension L/K of fields is finite if and only if it is *finitely generated*; i.e. iff $L = K(\alpha_1, \ldots, \alpha_n)$ for some $\alpha_i \in L$. Prove that the algebraic numbers (zeros of polynomials with rational coefficients) form a subfield of \mathbb{C} which is not finitely generated over \mathbb{Q} .

- 14. Let R be a ring, and K a subring of R which is a field. Show that if R is an integral domain and $\dim_K R < \infty$ then R is a field. Show that the result fails without the assumption that R is a domain.
- **15.** Let K and L be subfields of a field M such that M/K is finite. Denote by KL the set of all finite sums $\sum x_i y_i$ with $x_i \in K$ and $y_i \in L$. Show that KL is a subfield of M, and that

$$[KL:K] \le [L:K \cap L].$$

16. Suppose that L/K is an extension with [L:K]=3. Show that for any $x\in L$ and $y\in L-K$ we can find $p,q,r,s\in K$ such that $x=\frac{p+qy}{r+sy}$.

[Hint: Consider four appropriate elements of the 3-dimensional vector space L.]

- **17.** Let L/K be an extension, and $\alpha, \beta \in L$ transcendental over K. Show that α is algebraic over $K(\beta)$ iff β is algebraic over $K(\alpha)$. $[\alpha, \beta]$ are then said to be **algebrically dependent**.
- **18.** Show that for any n > 1 the polynomial $X^n + X + 3$ is irreducible over \mathbb{Q} .