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Background from Groups, Rings and Modules (summary)

1 Rings

1.1. In this course, unless stated to the contrary, ‘ring’ means a commutative ring with unit. In
detail, such a ring is a set R equipped with binary operations + (addition) and x (multiplication), and
distinguished elements 0, 1 € R satisfying the axioms:

(i) (R,+) is a commutative group with identity 0 (so for all z € R, 0 + z = z);
(ii) The operation x is commutative, associative, and for all z € R, 1 x z = z;
(iii) [Distributive law] For all z, y, z € R, z X (y + 2) = (z X y) + (= X 2).

A consequence of (iii) is that z x 0 = 0 (by taking z = 0). The multiplication sign x is usually omitted
or replaced by a dot; one writes z - y or simply zy instead of z x y.

1.2 Some examples of rings: Z (integers), Q (rational numbers), R (real numbers), C (complex
numbers), Z[i] = {a + bi | a,b € Z} (Gaussian integers), Z/nZ for n > 1 (integers mod n), polynomial
rings (see §3 below).

1.3. A zero ring is any ring with just one element 0, so 1 = 0 in this ring. (Notice that if n = 1 then
Z/nZ is a zero ring.) If R is any nonzero ring then 1 # 0 in R. (Proof: suppose that 0 = 1. Then for
anyrz € R,z=1-2=0-2=0,s0 R={0}.)

1.4. Let R be a nonzero ring. We say R is an integral domain (or simply a domain) if it has no zero
divisors; i.e if zy = 0 implies z = 0 or y = 0. It is a field if every nonzero element has an inverse under
multiplication; i.e. if whenever  # 0 there exists z ' € R with zz~! = 1. The nonzero elements of a
field then form a group under multiplication.

1.5. A field is automatically an integral domain: if zy = 0 and = # 0, then y = 2z 'zy = 0. Of the
examples given above, Q; R and C are fields, Z and Z[i] are integral domains which are not fields. If
n = p is prime, then Z/pZ is a field (also denoted F,). If n is not prime then Z/nZ is not an integral
domain.

1.6. If R is any ring we write R* for the set of invertible elements (or units) of R. It is a group under
multiplication. For example, Z* = {£1}. If F' is a field then F* = F'\ {0}.
2 Homomorphisms and ideals
2.1. By a ring homomorphism we shall always mean a mapping ¢: R — S between two rings such that:
(i) for every =,y € R, ¢(z +y) = ¢(z) + ¢(y) and ¢(zy) = ¢(x)¢(y); and
(i1) ¢(1) = 1.
Associated to a homomorphism ¢: R — S are:
e its kernel, defined as: ker(¢) = {z € R| ¢(z) =0} C R
e its image, defined as: im(¢) = {¢(z) |z € R} C S.



The homomorphism ¢ is injective iff ker(¢) = 0, and is surjective iff im(¢) = S. The image of ¢ is a
subring of S.

2.2 Definition. An ideal of a ring R is a subset I C R satisfying:
(i) I is a subgroup of R under addition;

(ii) for every z € Randy € I, zy € 1.

2.3 Examples. In any ring R, R and {0} are ideals. Let R be any ring and a € R. Write (a) or aR
for the subset {az | z € R}. Then (a) is an ideal of R. This is called the ideal generated by a. Any ideal
of this form is said to be principal. In particular, the ideals R = (1) and {0} = (0) are principal.

2.4 Proposition. A ring R is a field iff it is nonzero and its only ideals are (0) and R.

Proof. Let R be a field, and I C R a nonzero ideal. Let z € I with z # 0; then 27! € R and so
1=2x"'z €I, hence I = R. Conversely, let R be a ring with no ideals other than (0) and R. Let z € R
with £ # 0. Then (z) is a nonzero ideal of R, hence (z) = R, which implies that zy = 1 for some y € R.
Therefore R is a field. O

2.5 Proposition. Let ¢: R — S be a homomorphism. Then ker(¢) is an ideal of R. Moreover ker(¢) # R
unless S is a zero ring.

2.6. Combining these two facts, one sees that any ring homomorphism ¢: F — K between fields is
injective.
2.7. The converse is true: every ideal of R is the kernel of some suitable homomorphism. In fact, given
an ideal I C R, define an equivalence relation on R by

z=y (modl) <= z—yel.

Let R/I be the set of equivalence classes. If z € R denote by Z € R/I the equivalence class containing
z. The conditions (i) and (ii) in the definition 2.2 imply that:

z=2z' (modI) . z+y=z'"+vy (mod I)
y=1vy (mod I) zy =z'y’ (mod I)

(for the second identity, notice that z'y' — zy = z'(y' — y) + y(z’ — z) € I). This means that we can
unambiguously define operations + and x on R/I by the formulae z +y = z +y, * X y = Ty, which
give R/I the structure of a ring, called the quotient ring of R by I. (This is just a generalisation of the
construction of Z/nZ.) The map

¢:R—>R/I
b

is then a homomorphism, whose kernel is I.

2.8. There is a bijection between the set of ideals of R/I and the set of ideals of R containing I; if
I C J C R then the corresponding ideal of R/I is J/I, and if J C R/I is an ideal the corresponding ideal
of R is

Y1) ={z€R|zecJ}

2.9. An isomorphism of rings is a ring homomorphism ¢: R — S such that there is a ring homomor-
phism %: .S — R for which 9 o ¢ = idr and ¢ o 9p = idg. This is equivalent to requiring that ¢ be a
bijection. Isomorphisms are usually denoted —.

2.10 Theorem (First Isomorphism Theorem). Let ¢: R — S be a ring homomorphism. Then there
is a unique isomorphism : R/ ker(¢) — im(¢) such that for every x € R, ¢(z) = ().



2.11. A ideal I C R is said to be prime if I # R and:
e whenever z, y € R with xy € I, at least one of z, y belongs to I
2.12 Proposition. An ideal I C R is prime iff R/I is an integral domain.
Proof. We have € I <= T = 0. This shows that the definitions are equivalent. O
2.13. Anideal I C R is mazimal if R # I and there is no ideal J with I & J & R.
2.14 Proposition. An ideal I C R is mazimal iff R/I is a field. (Hence mazimal —> prime.)

Proof. By 2.8, I is maximal iff the only ideals of R/I are R/I and (0), hence by 2.4 iff R/I is a field. O

3 Polynomials and rational functions

3.1. Let R be a ring and n a positive integer. The polynomial ring in the variables Xy,..., X, is the

ring R[X1, ..., Xy] whose elements are finite formal sums (for some N € N)
Y i X X
0< it yeresin <N

where a;, .. ;, € R, and multiplication and addition are defined in the obvious way. If R is an integral
domain then so is R[X7,...,X}], and in this case the units of R[Xj, ..., X,,] are just R* (this is not true
for general rings R).

3.2. If F is a field, then the field of rational functions over F is
F(Xl,...,Xn) = {g ‘ f,gEF[Xl,...,Xn], g;é()}

It is the field of fractions of F[X1,..., X,].
3.3 Theorem. Let F be a field, F[X] the polynomial ring in one variable. Then:
(i) every ideal of F[X] is principal (i.e. F[X] is a UFD); and
(ii) if f € F[X] is a nonzero polynomial, then (f) is prime <= (f) is mazimal <= f is irreducible.

Proof. (i) Let I be a nonzero ideal of F[X]. Choose f € I to be nonzero with minimal degree. Then I
claim that I = (f). Indeed, if g € I then there exist g,r € F[X]| with g = ¢f +r and deg(r) < deg(f) (by
the division algorithm in F[X]). As I is an ideal, r = g — gf € I, and as f was chosen to have minimal
degree among the nonzero elements of I, we must have r = 0, so that g = gf € (f). (This argument
shows that F[X] is a Euclidean domain, hence a UFD.)

(ii) Suppose f is irreducible. Then let I be an ideal with (f) C I C F[X]. By (i), I = (g) is principal,
so f € (g), which means f = gh for some h € F[X]. As f is irreducible either g is constant, in which
case (g) = R, or h is constant, in which case (g) = (f). Therefore (f) is maximal.

If (f) is maximal then it is certainly prime, so it remains to show that if (f) is prime, f is irreducible.
Suppose not. Then f = gh for some nonzero polynomials g, h of degree less than deg(f). Then g, h ¢ (f)
but gh € (f), hence (f) is not prime. O

3.4 Theorem (Gauss’s Lemma). Let R be a unique factorisation domain with field of fractions F.
Let f € R[X], and assume that f is not divisible by any non-unit of R. Then f is irreducible in R[X] iff
f is irreducible in F[X].

(We'll only need the case R = Z, F = Q, but the general case is no harder to prove.)



Proof. One direction is easy: suppose f is irreducible in F[X]. Then it has no nonconstant factors in
R[X] of degree less than deg(f). So by hypothesis it is irreducible in R[X].

For any polynomial f = a9+ a1 X +---+a, X" € R[X]\ {0}, define its content cont(f) to be the ged
of {ag,...,a,} (well-defined up to multiplication by a unit in R). If ¢ = cont(f) then ¢! f € R[X] and
cont(c 1 f) € R*. We prove:

If f, g € R[X] then cont(fg) = cont(f) cont(g).

For this, first divide f and g by their contents, so that we may assume that cont(f) = cont(g) = 1. We
need to show that cont(fg) € R*. If not, there exists an irreducible 7 € R with 7| cont(fg). Let

m+n

= iaixi, g= zn:bjxf, fg="> aX*.
i=0 =0 k=0

Thus we have
k
Cr = Z aibk_i.
i=0

As cont(f) = cont(g) = 1 not all the a; and not all the b; are divisible by 7. Choose 7 and j minimal
such that 7 fa; and 7 /b;. Then 7 }a;b;, and in the formula for ¢;;;, every term is divisible by 7 except
for the term a;b;. So 7 }c;4;, a contradiction.

Now suppose f € R[X] is reducible in F[X]. Then there exist nonconstant g, h € F[X]| with f = gh.
We can therefore write af = bgih; where a, b € R\ {0} and g1, h1 € R[X] with cont(g;) = cont(h;) = 1.
So cont(af) = cont(bgih1) = b by what was just proved, and therefore a|b. So f = (b/a)g1h1 is reducible
in R[X]. O

3.5 Theorem (Eisenstein’s Criterion for Irreducibility). Let p be a prime number and f = X™ +
an 1 X" P+ + a1 X + ag € Z[X] a monic polynomial of degree n > 1 such that:

(i) Every a; is divisible by p;
(i3) aq is not divisible by p>.
Then f is irreducible in Z[X] (hence in QX]| by Gauss’s Lemma).

Proof. Suppose f = gh with g, h € Z[X]. We may assume that g and h are monic of degrees m, n — m
respectively, where 0 < m < n. Write = for reduction modulo p, and consider the “reduction modulo p”
homomorphism

Z[X] = Fp[X]

Then g and h also have degrees m, n —m and gh = f = X" (by hypothesis (i)). Since F,[X] is a UFD
this forces g = X™, h = X"~™. Therefore g(0) = h(0) = 0 (mod p), hence ag = f(0) = g(0)h(0) =0
(mod p?), contradicting (ii). O

The argument just given proves the following more general statement: let R be a ring and I C R a
maximal ideal. Let f = X" +a, 1 X" ' +---+a1 X +ag € R[X] with all a; € I and ag ¢ I?. Then f is
irreducible in R[X].

3.6 Example. If p is prime, (X? —1)/(X —1) = XP~! +... + X + 1 is irreducible in Q[X]. (Put
T = X — 1, so the polynomial becomes Z];;ol (; fl) T* which satisfies (i) and (ii).)



