Example sheet 3, Galois Theory, 2006

- 1. Let M/K be a finite Galois extension, and H_1 , H_2 subgroups of Gal(M/K), with fixed fields L_1 , L_2 . Find the fixed field of $H_1 \cap H_2$, and identify the subgroup of Gal(M/K) corresponding to the field $L_1 \cap L_2$.
- **2.** Let M/K be a finite Galois extension, and L, L' intermediate fields. Show that if $\sigma: L \xrightarrow{\sim} L'$ is a K-isomorphism, then there exists $\bar{\sigma} \in \operatorname{Gal}(M/K)$ whose restriction to L is σ .
- **3.** Determine the Galois groups of the following polynomials in $\mathbb{Q}[x]$.

$$x^3 + 27x - 4$$
, $x^3 - 21x + 7$, $x^3 + 3x$, $x^3 + x^2 - 2x - 1$, $x^3 + x^2 - 2x + 1$.

- **4.** Let f be an irreducible cubic polynomial over K, $charK \neq 2$, and let δ be the square root of the discriminant of f. Show that f remains irreducible over $K(\delta)$.
- **5.** Find the Galois group of $X^4 + X^3 + 1$ over each of the finite fields \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_4 .
- **6.** Compute the Galois group of $X^5 2$ over \mathbb{Q} .
- 7. (i) Let p be prime. Show that any transitive subgroup G of S_p contains a p-cycle. Show that if G also contains a transposition then $G = S_p$.
- (ii) Prove that the Galois group of $X^5 + 2X + 6$ is S_5 .
- (iii) Show that if $f \in \mathbb{Q}[X]$ is an irreducible polynomial of degree p which has exactly two non-real roots, then its Galois group is S_p . Deduce that for $m \in \mathbb{Z}$ sufficiently large,

$$f = X^p + mp^2(X-1)(X-2)\cdots(X-p+2) - p$$

has Galois group S_p .

- **8.** What are the transitive subgroups of S_4 ? Find a monic polynomial over \mathbb{Z} of degree 4 whose Galois group is $V = \{e, (12)(34), (13)(24), (14)(23)\}$.
- **9.** (i) Let p be an odd prime, and let $x \in \mathbb{F}_{p^n}$. Show that $x \in \mathbb{F}_p$ iff $x^p = x$, and that $x + x^{-1} \in \mathbb{F}_p$ iff either $x^p = x$ or $x^p = x^{-1}$.
- (ii) Apply (i) to a root of $X^2 + 1$ in a suitable extension of \mathbb{F}_p to show that that -1 is a square in \mathbb{F}_p if and only if $p \equiv 1 \pmod{4}$.
- (iii) Show that $x^4 = -1$ iff $(x + x^{-1})^2 = 2$. Deduce that 2 is a square in \mathbb{F}_p if and only if $p \equiv \pm 1 \pmod{8}$.
- 10. Let k be any field, and let L=k(z) be the function field in the variable z. Define mappings $\sigma, \tau: L \to L$ by the formulae

$$\tau f(z) = f(\frac{1}{z}), \quad \sigma f(z) = f(1 - \frac{1}{z}).$$

Show that σ, τ are automorphisms of L, and that they generate a subgroup $G \subset \operatorname{Aut}(L)$ isomorphic to S_3 . Show that $L^G = k(w)$ where

$$w = \frac{(z^2 - z + 1)^3}{z^2(z - 1)^2}.$$

11. Let K be a field of characteristic p > 0. Let $a \in K$, and let $f \in K[X]$ be the polynomial $f(X) = X^p - X - a$. Show that f(X + b) = f(X) for every $b \in \mathbb{F}_p \subset K$. Now suppose that f does not have a root in K, and let L/K be a splitting field for f over K. Show that $L = K(\alpha)$ for any $\alpha \in L$ with $f(\alpha) = 0$, and that L/K is Galois, with Galois group isomorphic to $\mathbb{Z}/p\mathbb{Z}$.

1

- 12. Express $\sum_{i\neq j} X_i^3 X_j$ as a polynomial in the elementary symmetric polynomials.
- 13. Show that if X_1, \ldots, X_n are indeterminates, then

$$\begin{vmatrix} X_1^{n-1} & X_2^{n-1} & \cdots & X_n^{n-1} \\ X_1^{n-2} & X_2^{n-2} & \cdots & X_n^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ X_1 & X_2 & \cdots & X_n \\ 1 & 1 & \cdots & 1 \end{vmatrix} = \Delta = \prod_{1 \le i < j \le n} (X_i - X_j)$$

(First show that each $(X_i - X_j)$ is a factor of the determinant).

14. For an *n*-tuple $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{N}^n$, let $m_{\lambda} = \sum_{\mu \in S_n, \lambda} z^{\lambda}$ be the sum of all the monomials obtained from $z^{\lambda} = z_1^{\lambda_1} \dots z_n^{\lambda_n}$ by permuting indices, so that $\{m_{\lambda} \mid \lambda_1 \geq \dots \geq \lambda_n\}$ forms a basis of $\mathbb{Z}[z_1, \dots, z_n]^{S_n}$.

Show that the product of two such basis elements m_{λ}, m_{μ} is $m_{\lambda+\mu}$ plus a sum of smaller terms in lexicographical order:

$$m_{\lambda} \, m_{\mu} = m_{\lambda + \mu} + \sum_{\substack{
u < \lambda + \mu, \\

u_1 \ge \dots \ge \nu_n}} c_{
u} m_{
u},$$

for some integers c_{ν} .

- 15. Let $\Phi_n \in \mathbb{Z}[X]$ denote the n^{th} cyclotomic polynomial. Show that:
- (i) If n is odd then $\Phi_{2n}(X) = \Phi_n(-X)$.
- (ii) If p is a prime dividing n then $\Phi_{np}(X) = \Phi_n(X^p)$.
- (iii) If p and q are distinct primes then the nonzero coefficients of Φ_{pq} are alternately +1 and -1. [Hint: First show that if $1/(1-X^p)(1-X^q)$ is expanded as a powr series in X, then the coefficients of X^m with m < pq are either 0 or 1.]
- (iv) If n is not divisible by at least three distinct odd primes then the coefficients of Φ_n are -1, 0 or 1.
- (v) $\Phi_{3\times5\times7}$ has at least one coefficient which is not -1, 0 or 1.
- **16.** Let $K = \mathbb{Q}(\zeta)$ be the n^{th} cyclotomic field with $\zeta = e^{2\pi i/n}$. Show that under the isomorphism $\operatorname{Gal}(K/\mathbb{Q}) \simeq (\mathbb{Z}/n\mathbb{Z})^*$, complex conjugation is identified with the residue class of $-1 \pmod n$. Deduce that if $n \geqslant 3$, then $[K : K \cap \mathbb{R}] = 2$ and show that $K \cap \mathbb{R} = \mathbb{Q}(\zeta + \zeta^{-1}) = \mathbb{Q}(\cos 2\pi/n)$.
- 17. Find all the subfields of $\mathbb{Q}(e^{2\pi i/7})$. Which are Galois over \mathbb{Q} ?
- **18.** Let $f(X) = X^n + bX + c = \prod_{i=1}^n (X \alpha_i)$, with $n \ge 2$. Show that

$$\alpha_i f'(\alpha_i) = (n-1)b\left(\frac{-nc}{(n-1)b} - \alpha_i\right)$$

and deduce that the discriminant of f is

$$(-1)^{n(n-1)/2} ((1-n)^{n-1}b^n + n^nc^{n-1}).$$

2