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1. Let (Xn)n≥0 be a simple symmetric random walk starting at X0 = 0, so Xn = ξ1+ . . .+ξn
where (ξn)n≥1 are independent copies of ξ with P(ξ = ±1) = 1

2
. For δ > 0, let

W
(δ)
(n+p)δ =

√
δ(Xn + pξn+1)

for integer n ≥ 0 and 0 ≤ p < 1. Confirm that

(a) t 7→ W
(δ)
t is continuous,

(b) W
(δ)
t −W

(δ)
s is independent of (W

(δ)
u )0≤u≤s−δ where δ ≤ s ≤ t

(c) W
(δ)
t −W

(δ)
s converges in distribution to N(0, t− s) as δ ↓ 0. [It is a fact that if Yδ → Y

in distribution and Zδ → 0 in distribution, then Yδ + Zδ → Y in distribution.]

2. If (Wt)t≥0 is a Brownian motion, show that the following processes are martingales:

(i) W 2
t − t.

(ii) W 3
t − 3tWt.

(iii) eθWt− 1
2
θ2t for any θ ∈ R.

3. Let Ta = inf{t ≥ 0 : Wt = a} be the first time that a Brownian motion hit level
a > 0. Using a suitable martingale and the optional stopping theorem, show that the
Laplace transform of Ta is given by

E[e−λTa ] = e−a
√
2λ.

[It is a fact that the optional stopping theorem holds for continuous martingales.]
For the brave of heart: confirm this by integrating the density of Ta as derived from the

reflection principle.

4. Let (Wt)t≥0 be a Brownian motion. Show that the random variable supu≥1
Wu

u
has the

same distribution as |W1|. [Hint: Recall the time inversion of Brownian motion.]

5. Given constants c and θ such that θ+ 2c ̸= 0, use the Cameron–Martin theorem and the
reflection principle to show that

E[eθmax0≤s≤t(Ws+cs)] =E[eθ(Wt+ct)+ ] +
θ

θ + 2c
E[e(θ+2c)(Wt−ct)+ − 1]

=
2

θ + 2c

(
c Φ(−c

√
t) + (θ + c)e

1
2
θ(θ+2c)tΦ

(
(θ + c)

√
t
))

[Hint: E[eθX ] = 1 +
∫∞
0

θeθxP(X ≥ x)dx for non-negative X.]

6. Let v(δ)(t, x) = E[g(x+W
(δ)
t )] where W

(δ)
t is defined in Problem 1. Show that

v(δ)(t+ δ, x)− v(δ)(t, x)

δ
=

v(δ)(t, x+
√
δ)− 2v(δ)(t, x) + v(δ)(t, x−

√
δ)

2δ

7. Show that the following functions satisfy the backward heat equation ∂tu+ 1
2
∂xxu = 0.

(i) u(t, x) = x2 − t.
(ii) u(t, x) = x3 − 3tx.

(iii) u(t, x) = eθx−θ2t/2 for any θ ∈ R.
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8. Let v solve the heat equation

∂τv =
1

2
∂xxv

and let V (t, s) = e−r(T−t)v(σ2(T − t), log s + (r − σ2/2)(T − t)). Verify that V solves the
Black–Scholes PDE

∂tV + rs∂sV +
1

2
σ2s2∂ssV = rV

9. In the Black–Scholes model, find the time-t prices of European contingent claims which

pay at time T the amounts: (a)
√
ST , (b) logST , (c)

∫ T

0
Sudu

In each case, how many shares should be held at time t to replicate the payout?

10. Let EC(S0, K, σ, r, T ) denote the initial price in of a European call option with strike
K, expiry T on an asset with initial price S0, in the Black–Scholes model volatility with σ
and interest rate is r. Let EP(S0, K, σ, r, T ) be the price of the European put with the same
parameters. Verify the put-call symmetry formula

EP(S0, K, σ, r, T ) = EC(Ke−rT , S0e
rT , σ, r, T )

11. Show that EC(S0, K, σ, r, T ) is strictly decreasing in the strike price K, and is strictly
increasing in the initial stock price S0, in the volatility σ, in the interest rate r and in the
expiry T . Furthermore, show that is strictly convex in both S0 and K.
What are the corresponding statements for the Black–Scholes price of a European put

option?

12. A European lookback call option entitles the holder to buy one share of stock at the
expiry time T at the lowest price reached by the stock during the life of the option. Thus,
if it is purchased at time 0, at time T it pays off the amount ST − inf0≤u≤T Su. In the
Black-Scholes model show that the initial price of such an option is

S0

a

[
(a+ 1)Φ

(
1
2
(a+ 1)σ

√
T
)
− e−rT (a− 1)Φ

(
1
2
(a− 1)σ

√
T
)
− 1

]
,

assuming r > 0, where a = 2r/σ2. [Hint: use Problem 5]

13. Using the notation of Problem 10, show that the initial Black–Scholes price of a down-
and-out call with strike K and a barrier at B, where B < min{S0, K}, can be expressed
as

EC(S0, K, σ, r, T )− (B/S0)
2r/σ2−1EC(B2/S0, K, σ, r, T ).
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