

- Given a filtration $(\mathcal{F}_n)_{n \geq 0}$ and a stopping time T , show that there exists an adapted process $(X_n)_{n \geq 0}$ such that $T = \inf\{n \geq 0 : X_n > 0\}$.
- Let $(X_n)_{n \geq 0}$ be an integrable adapted process such that $\mathbb{E}(X_T) = X_0$ for all bounded stopping times T . Show that $(X_n)_{n \geq 0}$ is a martingale. Hint: Fix n and $A \in \mathcal{F}_{n-1}$ and consider the random time $T = n - \mathbb{1}_A$.
- An agent has initial capital X_0 . At time n , he observes a non-negative random variable Y_n and then chooses C_{n+1} , the amount of capital to consume between times n and $n+1$. Assume $(Y_n)_{0 \leq n \leq N}$ are independent copies of Y with $\mathbb{E}(Y) = m$. His objective is to maximise

$$\mathbb{E} \left[\sum_{n=0}^N Y_n \log C_{n+1} \right]$$

subject to the constraint $\sum_{i=1}^{N+1} C_i = X_0$. Find his optimal consumption policy. Hint: Let $X_n = X_0 - \sum_{i=1}^n C_i$. Given $Y_n = y$ and $X_n = x$, look for a value function of form

$$V(n, x, y) = (y + (N - n)m) \log x + b(n, y)$$

- Consider a market with $d = 1$ risky asset with prices $(S_n)_{n \geq 0}$ and interest rate r . Consider an investor with initial wealth $X_0 > 0$, who consumes C_n and holds θ_n shares during the interval $(n-1, n]$, where C_n and θ_n are \mathcal{F}_{n-1} measurable. The investor's goal is to

$$\text{maximise } \mathbb{E} \left[\sum_{k=1}^{\infty} \beta^{k-1} U(C_k) \right]$$

where $U(x) = \sqrt{x}$ is the investor's utility function and $0 < \beta < 1$ is the investor's subjective rate of discounting. Assume $S_n = S_{n-1} \xi_n$ where $(\xi_n)_{n \geq 1}$ are independent copies of the positive random variable ξ , and assume that $0 \leq C_n \leq X_{n-1}$ for all time n .

Let $\alpha = \max_t \mathbb{E}[U(1 + r + t[\xi - (1 + r)])]$ and let t^* be the maximiser. Assuming that $\alpha\beta < 1$, show that the optimised wealth is

$$X_n = X_0 \alpha^{2n} \beta^{2n} \prod_{k=1}^n (1 + r + t^*[\xi_k - (1 + r)])$$

where the investor consumes $C_n = (1 - \alpha^2 \beta^2) X_{n-1}$ and holds $\theta_n = \alpha^2 \beta^2 t^* X_{n-1} / S_{n-1}$ number of shares.

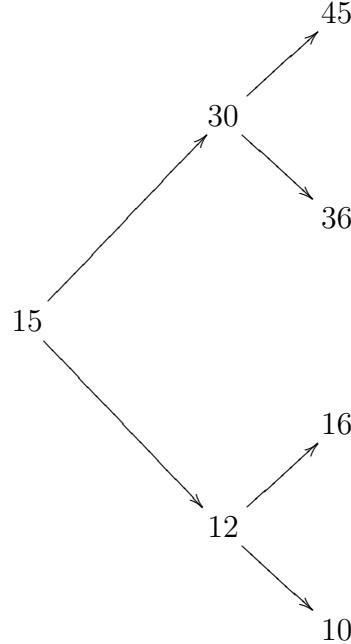
- Consider the following game. There are N envelopes, with envelope n containing ξ_n pounds, where ξ_1, \dots, ξ_N are independent copies of ξ with $\mathbb{P}(\xi \leq x) = \frac{x}{\sqrt{x^2+1}}$. The envelopes are opened one at a time. After opening envelope $n < N$, you must choose whether to end the game and keep the money in the envelope, or to continue the game and open envelope $n+1$. Assuming you are risk-neutral, show that your optimal policy is to stop the first time that $\xi_n \geq \sqrt{N - n}$.

- In the arbitrage-free binomial model, find the time- n price and replication strategies for European claims with time- N payout (a) $Y = \sqrt{S_N}$. (b) $Y = \log S_N$. (c) $Y = \sum_{k=0}^N S_k$.

For part (c), to what extent does your answer depend on the details of the binomial model?

7. Consider the arbitrage-free binomial model with parameters a, b and interest rate r . Let $\text{EC}(K, N, S_0)$ be the time-0 price of a European call option with strike K and maturity N when the time-0 of the stock is S_0 . Show that the price is decreasing and convex in K , increasing in S_0 , and (if $r \geq 0$) increasing in N .

8. Consider the following two-period market model with two assets. There is a riskless bank account with risk-free rate $r = 1/4$ and a stock with prices given by



Find the risk-neutral measure \mathbb{Q} .

Consider a European put option which strike $K = 15$ expiring at time 2. What is the no-arbitrage price of the option at time 0? What is the replicating strategy?

9. In the model of Question 8, find the time-zero price and optimal exercise policy for an American put option with strike 15 and expiry 2. Check that the value is strictly bigger than the value of the corresponding European put. Explain why, in contrast, the prices of American and Europeans calls are equal.