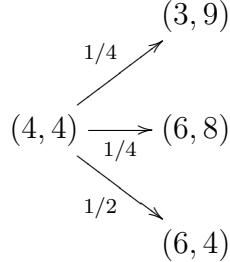


1. Suppose the interest rate is $r = 1/4$, and there are $d = 2$ risky assets with prices



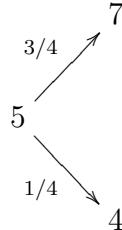
Find all arbitrage portfolios and/or all risk-neutral probability measures.

2. (Stiemke's theorem) Let A be a $m \times n$ matrix. Prove that exactly one of the following statements is true:

- There exists an $x \in \mathbb{R}^n$ with $x_i > 0$ for all $i = 1, \dots, n$ such that $Ax = 0$.
- There exists a $y \in \mathbb{R}^m$ with $(A^T y)_i \geq 0$ for all $i = 1, \dots, n$ such that $A^T y \neq 0$.

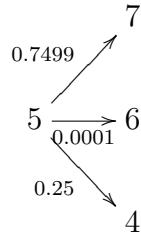
[Hint: relate the matrix A to a financial model, and use the fundamental theorem.]

3. Suppose the interest rate is $r = 1/3$, and there is $d = 1$ risky asset with prices



Introduce a call option with strike 6. Find its unique no-arbitrage initial price. Find a portfolio consisting of the risky asset and the bank account that replicates the payout of the call. Find the no-arbitrage price of the put option with the same strike.

4. Consider the set-up of the previous problem, but now the prices are



Show directly that the payout of the call cannot be replicated by trading in the stock and bank account. Prove that there is no arbitrage if and only if the initial call price is in the open interval $(1/2, 2/3)$.

5. Consider a market with one risk-free asset with interest rate r and d risky assets with prices $(S_t)_{t \in \{0,1\}}$. Suppose this market has no arbitrage. Now introduce a claim with payout Y ,

and assume that there exists a unique price $\pi = y$ such that the augmented market also has no arbitrage. We will show that the claim is attainable in the original market.

(a) Why is there no loss to assume that the random variables $\{S_1^i - (1+r)S_0^i, 1 \leq i \leq d\}$ are linearly independent? Make this assumption for the rest of the problem.
 (b) Why must there exist an equivalent measure \mathbb{Q} such that $\frac{1}{1+r}\mathbb{E}^{\mathbb{Q}}(S_1) = S_0$ and $\frac{1}{1+r}\mathbb{E}^{\mathbb{Q}}(Y) = y$?
 (c) Consider a market where the initial price of the claim is $\pi = y - \frac{1}{n}$. Show that there exists a portfolio $(\theta_n^{\top}, \varphi_n)^{\top}$ such that

$$\theta_n^{\top}[S_1 - (1+r)S_0] + \varphi_n[Y - (1+r)(y - \frac{1}{n})] \geq 0 \text{ almost surely.}$$

with strict inequality with positive probability.

(d) By computing the expected value of both sides of the inequality in (c) with respect to a risk-neutral measure \mathbb{Q} for the original market, conclude that $\varphi_n > 0$. Explain why we may henceforth assume $\varphi_n = 1$ without loss of generality.
 (e) Suppose the sequence $(\theta_n)_n$ is unbounded. By considering the sequence $(\lambda_n)_n$ where $\lambda_n = \theta_n/\|\theta_n\|$, show that there is a non-zero vector λ_0 such that

$$\lambda_0^{\top}[S_1 - (1+r)S_0] \geq 0 \text{ almost surely.}$$

Why is this a contradiction?

(f) Suppose the sequence $(\theta_n)_n$ is bounded. Show that there exists a portfolio θ_0 such that

$$Y \geq (1+r)y + \theta_0^{\top}[S_1 - (1+r)S_0] \text{ almost surely.}$$

Why does it follow that there is almost sure equality in the above inequality?

6. Let $(\xi_n)_{n \geq 1}$ be an IID sequence, and let $X_0 = 0$ and $X_n = \xi_1 + \dots + \xi_n$. Let $\varphi(\theta) = \mathbb{E}(e^{\theta\xi_1})$ and suppose φ is finite-valued, and that $\mathbb{E}(\xi_1) = 0$, $\mathbb{E}(\xi_1^2) = \sigma^2$ and $\mathbb{E}(\xi_1^3) = \mu_3$. Show that the following processes are martingales.

- (i) $X_n^2 - n\sigma^2$.
- (ii) $X_n^3 - n(3\sigma^2 X_n + \mu_3)$
- (iii) $e^{\theta X_n} \varphi(\theta)^{-n}$ for any θ .

7. Let $(X_n)_{n \geq 0}$ be a square integrable martingale with X_0 constant. Show that

$$\text{Var}(X_n) = \sum_{k=1}^n \text{Var}(X_k - X_{k-1}).$$

8. At time 0 an urn contains W_0 white balls and R_0 red balls. Take out a ball at random and replace it by two balls of the same colour; this gives the new content of the urn at time 1. Keep iterating this procedure.

Suppose there are W_n white balls and R_n red balls in the urn at time n . The probability of choosing a white ball at time n is then $P_n = \frac{W_n}{W_n + R_n}$.

(a) Show that $(P_n)_{n \geq 0}$ is a martingale.
 (b) Let $P_n^{(k)}$ be the probability of choosing k white balls in a row starting at time n . Show that $(P_n^{(k)})_{n \geq 0}$ is a martingale for all k .