Stochastic Financial Models

Example sheet 4 - Michaelmas 2023

1. Let $\left(X_{n}\right)_{n \geq 0}$ be a simple symmetric random walk starting at $X_{0}=0$, so $X_{n}=\xi_{1}+\ldots+\xi_{n}$ where $\left(\xi_{n}\right)_{n \geq 1}$ are independent copies of ξ with $\mathbb{P}(\xi= \pm 1)=\frac{1}{2}$. For $\delta>0$, let

$$
W_{(n+p) \delta}^{(\delta)}=\sqrt{\delta}\left(X_{n}+p \xi_{n+1}\right)
$$

for integer $n \geq 0$ and $0 \leq p<1$. Confirm that
(a) $t \mapsto W_{t}^{(\delta)}$ is continuous,
(b) $W_{t}^{(\delta)}-W_{s}^{(\delta)}$ is independent of $\left(W_{u}^{(\delta)}\right)_{0 \leq u \leq s-\delta}$ where $\delta \leq s \leq t$
(c) $W_{t}^{(\delta)}-W_{s}^{(\delta)}$ converges in distribution to $N(0, t-s)$ as $\delta \downarrow 0$. [It is a fact that if $Y_{\delta} \rightarrow Y$ in distribution and $Z_{\delta} \rightarrow 0$ in distribution, then $Y_{\delta}+Z_{\delta} \rightarrow Y$ in distribution.]
2. If $\left(W_{t}\right)_{t \geq 0}$ is a Brownian motion, show that the following processes are martingales:
(i) $W_{t}^{2}-t$.
(ii) $W_{t}^{3}-3 t W_{t}$.
(iii) $e^{\theta W_{t}-\theta^{2} t / 2}$ for any $\theta \in \mathbb{R}$.
3. Let $T_{a}=\inf \left\{t \geq 0: W_{t}=a\right\}$ be the first time that a Brownian motion hit level $a>0$. Using a suitable martingale and the optional stopping theorem, show that the Laplace transform of T_{a} is given by

$$
\mathbb{E}\left[e^{-\lambda T_{a}}\right]=e^{-a \sqrt{2 \lambda}}
$$

[It is a fact that the optional stopping theorem holds for continuous martingales.]
For the brave of heart: confirm this by integrating the density of T_{a} as derived from the reflection principle.
4. Let $\left(W_{t}\right)_{t \geq 0}$ be a Brownian motion. Show that the random variable $\sup _{u \geq 1} \frac{W_{u}}{u}$ has the same distribution as $\left|W_{1}\right|$. [Hint: Recall the time inversion of Brownian motion.]
5. Given constants c and θ such that $\theta+2 c \neq 0$, use the Cameron-Martin theorem and the reflection principle to show that

$$
\mathbb{E}\left[e^{\theta \max _{0 \leq s \leq t}\left(W_{s}+c s\right)}\right]=\frac{2}{\theta+2 c}\left(c \Phi(-c \sqrt{t})+(\theta+c) e^{\frac{1}{2} \theta(\theta+2 c) t} \Phi((\theta+c) \sqrt{t})\right)
$$

[Hint: $\mathbb{E}\left[e^{\theta X}\right]=1+\int_{0}^{\infty} \theta e^{\theta x} \mathbb{P}(X \geq x) d x$ for non-negative X.]
6. Let $v^{(\delta)}(t, x)=\mathbb{E}\left[g\left(x+W_{t}^{(\delta)}\right)\right]$ where $W_{t}^{(\delta)}$ is defined in Problem 1. Show that

$$
\frac{v^{(\delta)}(t+\delta, x)-v^{(\delta)}(t, x)}{\delta}=\frac{v^{(\delta)}(t, x+\sqrt{\delta})-2 v^{(\delta)}(t, x)+v^{(\delta)}(t, x-\sqrt{\delta})}{2 \delta}
$$

7. Show that the following functions satisfy the backward heat equation $\partial_{t} u+\frac{1}{2} \partial_{x x} u=0$.
(i) $u(t, x)=x^{2}-t$.
(ii) $u(t, x)=x^{3}-3 t x$.
(iii) $u(t, x)=e^{\theta x-\theta^{2} t / 2}$ for any $\theta \in \mathbb{R}$.
8. Let v solve the heat equation

$$
\partial_{\tau} v=\frac{1}{2} \partial_{x x} v
$$

and let $V(t, s)=e^{-r(T-t)} v\left(\sigma^{2}(T-t), \log s+\left(r-\sigma^{2} / 2\right)(T-t)\right)$. Verify that V solves the Black-Scholes PDE

$$
\partial_{t} V+r s \partial_{s} V+\frac{1}{2} \sigma^{2} s^{2} \partial_{s s} V=r V
$$

9. In the Black-Scholes model, find the time- t prices of European contingent claims which pay at time T the amounts: (a) $\sqrt{S_{T}}$, (b) $\log S_{T}$, (c) $\int_{0}^{T} S_{u} d u$

In each case, how many shares should be held at time t to replicate the payout?
10. Let $\mathrm{EC}\left(S_{0}, K, \sigma, r, T\right)$ denote the initial price in of a European call option with strike K, expiry T on an asset with initial price S_{0}, in the Black-Scholes model volatility with σ and interest rate is r. Let $\operatorname{EP}\left(S_{0}, K, \sigma, r, T\right)$ be the price of the European put with the same parameters. Verify the put-call symmetry formula

$$
\mathrm{EP}\left(S_{0}, K, \sigma, r, T\right)=\mathrm{EC}\left(K e^{-r T}, S_{0} e^{r T}, \sigma, r, T\right)
$$

11. Show that $\operatorname{EC}\left(S_{0}, K, \sigma, r, T\right)$ is strictly decreasing in the strike price K, and is strictly increasing in the initial stock price S_{0}, in the volatility σ, in the interest rate r and in the expiry T. Furthermore, show that is strictly convex in both S_{0} and K.

What are the corresponding statements for the Black-Scholes price of a European put option?
12. A European lookback call option entitles the holder to buy one share of stock at the expiry time T at the lowest price reached by the stock during the life of the option. Thus, if it is purchased at time 0 , at time T it pays off the amount $S_{T}-\inf _{0 \leq u \leq T} S_{u}$. In the Black-Scholes model show that the initial price of such an option is

$$
\frac{S_{0}}{a}\left[(a+1) \Phi\left(\frac{1}{2}(a+1) \sigma \sqrt{T}\right)-e^{-r T}(a-1) \Phi\left(\frac{1}{2}(a-1) \sigma \sqrt{T}\right)-1\right]
$$

assuming $r>0$, where $a=2 r / \sigma^{2}$. [Hint: use Problem 5]
13. Using the notation of Problem 11, show that the initial Black-Scholes price of a down-and-out call with strike K and a barrier at B, where $B<\min \left\{S_{0}, K\right\}$, can be expressed as

$$
\mathrm{EC}\left(S_{0}, K, \sigma, r, T\right)-\left(B / S_{0}\right)^{2 r / \sigma^{2}-1} \mathrm{EC}\left(B^{2} / S_{0}, K, \sigma, r, T\right)
$$

