Stochastic Financial Models

Michael Tehranchi

Example sheet 1 - Michaelmas 2022

Throughout this sheet, consider a market with risk-free interest rate r and d risky assets with initial prices S_0 and time-1 price S_1 , where $\mathbb{E}(S_1) = \mu$ and $\text{Cov}(S_1) = V$. We assume that V is positive definite. Given a utility function U and initial wealth x, let $\pi(Y)$ denote the indifference price of a claim with time-1 payout Y.

Also, a function is said to be *suitable* for a problem if it is behaved well enough for the formal calculation to be justified.

1. Given an initial wealth $X_0 = x$, an investor tries to maximise $F(\mathbb{E}(X_1), \operatorname{Var}(X_1))$ where X_1 is her wealth at time 1 and where the function F is given. Suppose that $F(\cdot, \sigma^2)$ is increasing for all σ^2 and $F(m, \cdot)$ is decreasing for all m. If there is a unique optimal portfolio of risky assets, show that it is mean-variance efficient.

2. Suppose that the random variable Z has zero mean and that the function U is suitable. Let

$$\psi(m,\sigma) = \mathbb{E}[U(m+\sigma Z)].$$

Show that

- (a) if U is increasing, then $\psi(\cdot, \sigma)$ is increasing for all σ
- (b) if U is concave, then ψ concave, that is

$$\psi(pm_0 + qm_1, p\sigma_0 + q\sigma_1) \ge p\psi(m_0, \sigma_0) + q\psi(m_1, \sigma_1)$$

for all $m_0, m_1, \sigma_0, \sigma_1$ and $0 \le p = 1 - q \le 1$.

(c) if U is concave, then $\psi(m, \cdot)$ is decreasing on $[0, \infty)$ for all m

3. Suppose S_1 is Gaussian. Given an initial wealth $X_0 = x$, an investor maximises $\mathbb{E}[U(X_1)]$ where X_1 is her wealth at time 1. Assume that the suitable function U is increasing and concave. Show that the optimal portfolio is mean-variance efficient.

4. Some useful facts about the Gaussian distribution for later reference.

- (a) Suppose that $X \sim N(\mu, \sigma^2)$ and f is suitable. Show that
 - (i) $\mathbb{E}[e^X f(X)] = e^{\mu + \frac{1}{2}\sigma^2} \mathbb{E}[f(X + \sigma^2)]$
 - (ii) $\operatorname{Cov}(X, f(X)) = \sigma^2 \mathbb{E}[f'(X)]$
- (b) Now let X and Y be jointly Gaussian random vectors such that Cov(X) is positive definite. Show that
 - (i) X and Z are independent, where $Z = Y \text{Cov}(Y, X)\text{Cov}(X)^{-1}X$
 - (ii) $\operatorname{Cov}(f(X), Y) = \mathbb{E}[f'(X)]\operatorname{Cov}(X, Y)$ when X is scalar
- 5. Reconsider Problem 3. Show that the optimal portfolio of risky assets is

$$\theta^* = \lambda \ V^{-1}[\mu - (1+r)S_0]$$

where

$$\lambda = -\frac{\mathbb{E}[U'(X_1^*)]}{\mathbb{E}[U''(X_1^*)]}$$

and $X_1^* = (1+r)x + \theta^*[S_1 - (1+r)S_0]$ is the optimised time-1 wealth. Compute λ in the case where $U(x) = -e^{-\gamma x}$ for a given risk aversion parameter $\gamma > 0$.

6. Suppose that X has the $N(\mu, \sigma^2)$ distribution under a probability measure \mathbb{Q} . Let \mathbb{Q} be the equivalent probability measure such that $\frac{d\mathbb{Q}}{d\mathbb{P}} \propto e^X$. Show that the distribution of X under \mathbb{Q} is $N(\mu + \sigma^2, \sigma^2)$.

7. Show that
$$\pi(a + b^{\top}S_1 + Y) = \frac{a}{1+r} + b^{\top}S_0 + \pi(Y)$$
 for any constants $a \in \mathbb{R}$ and $b \in \mathbb{R}^n$.

8. Show that the function $t \mapsto \frac{\pi(tY)}{t}$ is decreasing.

9. Let $U(x) = -e^{-\gamma x}$ where $\gamma > 0$ is the constant coefficient of absolute risk aversion. Consider contingent claims whose payouts Y are independent of the risky asset prices S_1 .

(a) Show that

$$\pi(Y) = \frac{1}{1+r} U^{-1} \left(\mathbb{E}[U(Y)] \right)$$

Simplify this formula when Y is Gaussian.

- (b) Verify that the formula from part (a) is a concave function of Y.
- (c) Verify that

$$\lim_{t\downarrow 0} \frac{1}{t} \pi(tY) = \frac{1}{1+r} \mathbb{E}^{\mathbb{Q}}(Y)$$

where \mathbb{Q} is the risk-neutral probability measure whose density $\frac{d\mathbb{Q}}{d\mathbb{P}}$ is proportional to the marginal utility of optimised time-1 wealth $U'(X_1^*)$.

10. Let
$$U(x) = -e^{-\gamma x}$$
 where $\gamma > 0$ and let S_1 and Y be jointly Gaussian. Derive the formula
$$\pi(Y) = \theta^{\top} S_0 + \frac{1}{1+r} \left(\mathbb{E}(Z) - \frac{\gamma}{2} \operatorname{Var}(Z) \right)$$

where $b = V^{-1} \text{Cov}(S_1, Y)$ and $Z = Y - b^{\top} S_1$.

11. In lectures, we have thought of the time-0 prices S_0 as given, and computed agents' optimal portfolios based on this. In this problem we will *derive* this initial price by asking that the market is in equilibrium, i.e. that net supply equals net demand.

Suppose there is a total of $n_i > 0$ shares of asset *i*, and let $n = (n_1, \ldots, n_d)^{\top}$. Suppose that there are *K* agents in the market, where each agent chooses a mean-variance efficient portfolio. Show that the equilibrium time-0 prices for the risky assets is of the form

$$S_0 = \frac{1}{1+r}(\mu - \Gamma V n)$$

for a positive scalar Γ .