Stochastic Financial Models – Example sheet 4 Lent 2017, SA

Problem 1. Show that the Black–Scholes price of a European call option is strictly convex in both the strike price K and the initial stock price S_0 , decreasing in K and increasing in S_0 . Show that the price increases with the interest rate r, and with the expiry T.

What are the corresponding statements for the Black–Scholes price of a European put option?

Problem 2. Consider a stock which pays a dividend at constant rate $\delta \ge 0$. The price of the stock is modelled by

$$S_t = S_0 e^{\sigma W_t + (r - \delta - \sigma^2/2)t}$$

where $r \ge 0$ is the risk-free interest rate. for a Brownian motion W. Show that

$$e^{-rt}S_t + \int_0^t e^{-ru}S_u\delta du$$

defines a martingale. Why then is S a sensible model for the stock price (at least under an equivalent measure)? Show that the time-0 value of a European put option with strike K and expiry T written on this asset is

$$Ke^{-rT}\Phi\left(\frac{\log(K/S_0) - (r - \delta - \sigma^2/2)T}{\sigma\sqrt{T}}\right) - S_0e^{-\delta T}\Phi\left(\frac{\log(K/S_0) - (r - \delta + \sigma^2/2)T}{\sigma\sqrt{T}}\right)$$

Can we deduce the price of the European call by put-call parity in the case when the stock pays dividends?

Problem 3. Show that the joint moment generating function of a Brownian motion and its maximum is given by

$$\mathbb{E}(e^{aW_t + b\max_{s \in [0,t]} W_s}) = \frac{2}{2a+b} \left((a+b)\Phi[(a+b)\sqrt{t}]e^{(a+b)^2t/2} + a\Phi(-a\sqrt{t})e^{a^2t/2} \right)$$

Problem 4. A European lookback call option entitles the holder to buy one unit of stock at the expiry time T at the lowest price reached by the stock during the life of the option. Thus, if it is purchased at time 0, at time T it pays off the amount $S_T - \inf_{0 \le u \le T} S_u$. Find the initial price of such an option in the Black-Scholes model.

Problem 5. Let $EC(S_0, K, \sigma, r, T)$ denote the Black–Scholes price of a European call option with strike K, expiry T on an asset with initial price S_0 , volatility σ , when the constant interest rate is r. Show that the price of a down-and-out call with strike K and a barrier at B, where $B < \min\{S_0, K\}$, can be expressed in terms of EC as

$$EC(S_0, K, \sigma, r, T) - (B/S_0)^{2r/\sigma^2 - 1} EC(B^2/S_0, K, \sigma, r, T).$$

Problem 6. In the Black–Scholes model, find the time-0 prices of European contingent claims which pay at time T the amounts:

- (a) $\int_0^T S_u du$
- (b) $(\log S_T)^2$.

Problem 7. Given times $0 < T_0 < T_1$, a forward start call option gives the right (but not the obligation) to buy a certain stock at time T_1 at the stock's price at time T_0 . Explain why the payout is $(S_{T_1} - S_{T_0})^+$ and find its initial price in the Black–Scholes model. How is this option hedged?

Problem 8. The Black–Scholes PDE is given by

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 V}{\partial s^2} + rs \frac{\partial V}{\partial s} - rV = 0.$$

(i) Set $v(\tau, x) = V(T - 2\tau/\sigma^2, e^x)$. Show that

$$\frac{\partial v}{\partial \tau} - \frac{\partial^2 v}{\partial x^2} + (1-k)\frac{\partial v}{\partial x} + kv = 0$$

for constant k which you should determine.

(ii) Let α, β be real constants and defined $u(x, \tau)$ via

$$u\left(au,x
ight) =e^{lpha x+eta au}v\left(au,x
ight) \,.$$

Find the PDE for $u(x,\tau)$ and choose α,β such that u satisfies the standard heat equation,

$$\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial x^2}$$

Problem 9. Consider the standard heat equation

$$\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial x^2}.$$

Assume $t \in [0, T]$, $x \in [0, L]$ and initial/boundary data

$$u(0, x) = g(x), u(t, 0) = a(t), u(t, L) = b(t).$$

The grid $\{(i\delta_t, j\delta_x) : i = 1, ..., N_t, j = 1, ..., N_x\}$ with $\delta_x = L/N_x, \delta_t = T/N_t$ is given and we seek approximations $U_j^i \approx u(i\delta_t, j\delta_x)$. Set $U^i = (U_j^i)_{j=1,...,N_x-1} \in \mathbb{R}^{N_x-1}$.

(i) Formulate the FTCS-method as linear equations

$$U^{i+1} = FU^i + p^i$$

for some $(N_x - 1) \times (N_x - 1)$ -matrix F and $p^i \in \mathbb{R}^{N_x - 1}$.

(ii) Similarly, formulate the BTCS-method as

$$BU^{i+1} = U^i + q^i$$

for a matrix B and a vector \boldsymbol{q}^i to be determined.

(iii) Show that adding these two linear equations yields exactly the Crank–Nicolson method.