Stochastic Financial Models – Example sheet 2 Lent 2017, SA

Problem 1. Suppose that X_1, X_2, \ldots are i.i.d. real random variables with $\mathbb{E}(|X_1|) < \infty$. Let $S_0 = 0$ and $S_n = X_1 + \ldots + X_n$.

- (a) When is $(S_n)_{n\geq 0}$ a martingale? Specify the filtration.
- (b) Show that

$$\mathbb{E}[X_1|S_n] = \frac{S_n}{n}$$

- (c) Compute $\mathbb{E}[S_n|X_1]$.
- (d) Find an example of a process $(Z_n)_{n\geq 0}$ adapted to some filtration which has the property

$$\mathbb{E}[Z_{n+1}|Z_n] = Z_n$$

for all $n \ge 0$, but $\mathbb{E}[Z_{N+1}|\mathcal{F}_N] \ne Z_N$ for some N. [Hint: Use part (b) with $Z_1 = S_1$ and $Z_2 = S_2$ but $Z_3 \ne S_3$]

Problem 2. Consider a (homogenous) Markov-chain $(X_n)_{n\geq 0}$ on a finite statespace S with transition matrix P. A function $f: S \to \mathbb{R}$ is considered as a column vector so that Pf makes sense as matrix multiplication. Let $\mathcal{F}_n = \sigma(X_k: 0 \le k \le n)$.

(a) Check that

$$[Pf](X_n) = \mathbb{E}[f(X_{n+1})|\mathcal{F}_n].$$

(b) Fix $f: S \to \mathbb{R}$ define

$$M_n = f(X_n) - f(X_0) - \sum_{k=0}^{n-1} [(P - I)f](X_k).$$

Show that $(M_n)_{n\geq 0}$ is a martingale.

(c) A function $f: S \to \mathbb{R}$ is called subharmonic if $f(x) \leq [Pf](x)$ for all x. Show that $(f(X_n))_{n\geq 0}$ a submartingale if f is subharmonic. (This explains the 'sub' in the definition of submartingale.)

Problem 3.

- (a) Given a sigma-algebra \mathcal{G} , show that $A \in \mathcal{G}$ if and only if $\mathbb{1}_A$ is \mathcal{G} -measurable.
- (b) Let τ be a stopping time for the filtration $(\mathcal{F}_n)_{n\geq 0}$ Show that $\mathbb{1}_{\{\tau\geq n+1\}}$ is \mathcal{F}_n -measurable for all $n\geq 0$.

(c) Let $M = (M_n)_{n \ge 0}$ be a submartingale and τ a stopping time. Show that the stopped submartingale M^{τ} defined as

$$M_n^\tau = M_{\tau \wedge n}$$

is still a submartingale.

Problem 4. Let X_1, X_2, \ldots be i.i.d. random variables with $\mathbb{E}(X_1) = \mu$, $\operatorname{Var}(X_1) = \sigma^2$ and moment generating function $\phi(\theta) = \mathbb{E}[e^{\theta X_1}]$, where ϕ is assumed finite valued. Assuming $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, show that the following are martingales

- (a) $M_n = S_n^2 \sigma^2 n$ if and only if $\mu = 0$.
- (b) $N_n = e^{\theta S_n} \phi(\theta)^{-n}$

where $S_n = X_1 + \ldots + X_n$.

Problem 5. Fix $s \in \mathbb{Z}$, and suppose that X_1, X_2, \ldots are i.i.d. random variables with values in $\{-1, 1\}$ so that $\mathbb{P}(X_1 = 1) = p = 1 - \mathbb{P}(X_1 = -1)$ for some fixed $p \in (0, 1)$. Let S be the process defined by $S_0 = s$ and $S_n = S_{n-1} + X_n$, i.e. a simple random walk started at $S_0 = s$.

(a) Show that the processes M and N defined by

$$M_n = \left(\frac{1-p}{p}\right)^{S_n} \text{ and } N_n = S_n + n(1-2p)$$

are martingales with respect to the filtration given by $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$.

Now assume p = 1/2, so that S is a simple symmetric random walk.

- (b) Suppose $S_0 = 1$.
 - (i) Show that $\tau = \inf\{n \ge 0, S_n = 0\}$ is a stopping time, possibly taking the value ∞ .
 - (ii) Apply the martingale convergence theorem to see that the stopped martingale S^{τ} converges almost surely (to what?). Conclude that $\tau < \infty$ a.s.
 - (iii) Show that the martingale S^{τ} does not converge in L^1 , i.e. $\mathbb{E}(|S_n^{\tau} S_{\infty}^{\tau}|)$ does not tend to 0 as $n \to \infty$.
- (c) Now let S be the simple symmetric random walk started at $S_0 = 0$.
 - (i) Fix integers $a, b \ge 0$ and let $\tau = \inf\{n \ge 0, S_n = -a \text{ or } S_n = b\}$. Check that τ is a stopping time. Why is $\tau < \infty$ almost surely?
 - (ii) Use the optional stopping theorem to compute the probability that S hits -a before b. Compute $\mathbb{E}(\tau)$. [Hint: Show that $S_n^2 n$ defines a martingale, and apply the optional stopping theorem to it.]

Problem 6. At time 1 an urn contains a white and a red ball. Take out a ball at random and replace it by two balls of the same colour; this gives the new content of the urn at time 2. Keep iterating this procedure.

Let Y_n be the number of white balls in the urn at time n, and let $X_n = \frac{Y_n}{n+1}$. Show that X_n is a.s. convergent to a random variable U. Compute the mean of U. Can you compute the variance of U? [Hint: Consider the process $\frac{Y_n(Y_n+1)}{(n+1)(n+2)}$.]

Problem 7. Consider a single-period trinomial model, with two assets, a riskless bond and a risky stock. Suppose that initially both are worth $S_0^0 = S_0^1 = 1$. The riskless rate is r so $S_1^0 = 1 + r$. The risky asset at time 1 will be worth a if the period was bad, b if the period was indifferent, and c if the period was good, a < b < c, and these are the only possibilities. We assume a < 1 + r < c.

- (a) Find all the risk-neutral measures for this model.
- (b) For simplicity only, assume r = 0. Characterise all contingent claims with payout $Y = f(S_1^1)$ at time 1 that can be replicated, that is for which there exists $\bar{\pi} \in \mathbb{R}^2$ such that

 $Y = \bar{\pi} \cdot \bar{S}_1.$

Determine the price of this contingent claim at time 0. Compute the expectation of Y with respect to any equivalent martingale measure. Conclusion?

(c) How would your analysis extend to a single-period model with d + 1 assets?

Problem 8. Consider a one-period binomial model with a stock and a riskless asset, that is S^0 and S^1 are defined as in Problem 7, but at time 1 the risky asset S^1 takes values a and c only. A utility-maximising investor has initial wealth $w_0 > 0$ and utility $U(x) = \sqrt{x}$. Find the agent's optimal investment in the risky stock, and verify it has the same sign as $\mathbb{E}[S_1] - (1+r)S_0$, where r is the riskless interest rate, and S_t is the price of the stock at time t.

Problem 9. Consider a single-period model with a risky asset S^1 having initial price S_0^1 . At time 1 its value S_1^1 is a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ of the form

$$S_1^1 = \exp(\sigma Z + m), \qquad m \in \mathbb{R}, \, \sigma > 0,$$

where $Z \sim N(0, 1)$. $(S_1^1$ is then also said to be log-normal distributed). For simplicity assume that there is a riskless asset S^0 with $S_0^0 = S_1^0 = 1$ (so r = 0). Find a risk-neutral measure \mathbb{Q} for this model. [Hint: Consider a density of the form $\frac{d\mathbb{Q}}{d\mathbb{P}} = \exp(\tilde{\sigma}Z + \tilde{m})$ and find suitable \tilde{m} and $\tilde{\sigma}$.]