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Problem 1. Suppose that X1, X2, . . . are i.i.d. real random variables with
E(|X1|) <∞. Let S0 = 0 and Sn = X1 + . . .+Xn.

(a) When is (Sn)n≥0 a martingale? Specify the filtration.

(b) Show that

E[X1|Sn] =
Sn
n
.

(c) Compute E[Sn|X1].

(d) Find an example of a process (Zn)n≥0 adapted to some filtration which has
the property

E[Zn+1|Zn] = Zn

for all n ≥ 0, but E[ZN+1|FN ] 6= ZN for some N . [Hint: Use part (b) with
Z1 = S1 and Z2 = S2 but Z3 6= S3 ]

Problem 2. Consider a (homogenous) Markov-chain (Xn)n≥0 on a finite state-
space S with transition matrix P . A function f : S → R is considered as a column
vector so that Pf makes sense as matrix multiplication. Let Fn = σ(Xk : 0 ≤ k ≤
n).

(a) Check that
[Pf ](Xn) = E[f(Xn+1)|Fn].

(b) Fix f : S → R define

Mn = f(Xn)− f(X0)−
n−1∑
k=0

[(P − I)f ](Xk).

Show that (Mn)n≥0 is a martingale.

(c) A function f : S → R is called subharmonic if f(x) ≤ [Pf ](x) for all x. Show
that (f(Xn))n≥0 a submartingale if f is subharmonic. (This explains the ‘sub’
in the definition of submartingale.)

Problem 3.

(a) Given a sigma-algebra G, show that A ∈ G if and only if 1lA is G-measurable.

(b) Let τ be a stopping time for the filtration (Fn)n≥0 Show that 1l{τ≥n+1} is
Fn-measurable for all n ≥ 0.
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(c) Let M = (Mn)n≥0 be a submartingale and τ a stopping time. Show that the
stopped submartingale M τ defined as

M τ
n = Mτ∧n

is still a submartingale.

Problem 4. Let X1, X2, . . . be i.i.d. random variables with E(X1) = µ, Var(X1) =
σ2 and moment generating function φ(θ) = E[eθX1 ], where φ is assumed finite
valued. Assuming Fn = σ(X1, . . . , Xn), show that the following are martingales

(a) Mn = S2
n − σ2n if and only if µ = 0.

(b) Nn = eθSnφ(θ)−n

where Sn = X1 + . . .+Xn.

Problem 5. Fix s ∈ Z, and suppose that X1, X2, . . . are i.i.d. random variables
with values in {−1, 1} so that P(X1 = 1) = p = 1 − P(X1 = −1) for some fixed
p ∈ (0, 1). Let S be the process defined by S0 = s and Sn = Sn−1 +Xn, i.e. a simple
random walk started at S0 = s.

(a) Show that the processes M and N defined by

Mn =

(
1− p
p

)Sn

and Nn = Sn + n(1− 2p)

are martingales with respect to the filtration given by Fn = σ(X1, . . . , Xn).

Now assume p = 1/2, so that S is a simple symmetric random walk.

(b) Suppose S0 = 1.

(i) Show that τ = inf{n ≥ 0, Sn = 0} is a stopping time, possibly taking the
value ∞.

(ii) Apply the martingale convergence theorem to see that the stopped mar-
tingale Sτ converges almost surely (to what?). Conclude that τ < ∞
a.s.

(iii) Show that the martingale Sτ does not converge in L1, i.e. E(|Sτn − Sτ∞|)
does not tend to 0 as n→∞.

(c) Now let S be the simple symmetric random walk started at S0 = 0.

(i) Fix integers a, b ≥ 0 and let τ = inf{n ≥ 0, Sn = −a or Sn = b}. Check
that τ is a stopping time. Why is τ <∞ almost surely?

(ii) Use the optional stopping theorem to compute the probability that S
hits −a before b. Compute E(τ). [Hint: Show that S2

n − n defines a
martingale, and apply the optional stopping theorem to it.]
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Problem 6. At time 1 an urn contains a white and a red ball. Take out a ball at
random and replace it by two balls of the same colour; this gives the new content
of the urn at time 2. Keep iterating this procedure.

Let Yn be the number of white balls in the urn at time n, and let Xn = Yn
n+1 .

Show that Xn is a.s. convergent to a random variable U . Compute the mean of U .
Can you compute the variance of U? [Hint: Consider the process Yn(Yn+1)

(n+1)(n+2) .]

Problem 7. Consider a single-period trinomial model, with two assets, a riskless
bond and a risky stock. Suppose that initially both are worth S0

0 = S1
0 = 1. The

riskless rate is r so S0
1 = 1+r. The risky asset at time 1 will be worth a if the period

was bad, b if the period was indifferent, and c if the period was good, a < b < c,
and these are the only possibilities. We assume a < 1 + r < c.

(a) Find all the risk-neutral measures for this model.

(b) For simplicity only, assume r = 0. Characterise all contingent claims with
payout Y = f(S1

1) at time 1 that can be replicated, that is for which there
exists π̄ ∈ R2 such that

Y = π̄ · S̄1.

Determine the price of this contingent claim at time 0. Compute the expec-
tation of Y with respect to any equivalent martingale measure. Conclusion?

(c) How would your analysis extend to a single-period model with d+ 1 assets?

Problem 8. Consider a one-period binomial model with a stock and a riskless
asset, that is S0 and S1 are defined as in Problem 7, but at time 1 the risky asset S1

takes values a and c only. A utility-maximising investor has initial wealth w0 > 0
and utility U(x) =

√
x. Find the agent’s optimal investment in the risky stock, and

verify it has the same sign as E[S1]− (1 + r)S0, where r is the riskless interest rate,
and St is the price of the stock at time t.

Problem 9. Consider a single-period model with a risky asset S1 having initial
price S1

0 . At time 1 its value S1
1 is a random variable on (Ω,F ,P) of the form

S1
1 = exp(σZ +m), m ∈ R, σ > 0,

where Z ∼ N(0, 1). (S1
1 is then also said to be log-normal distributed). For sim-

plicity assume that there is a riskless asset S0 with S0
0 = S0

1 = 1 (so r = 0). Find
a risk-neutral measure Q for this model. [Hint: Consider a density of the form
dQ
dP = exp(σ̃Z + m̃) and find suitable m̃ and σ̃. ]
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