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STOCHASTIC FINANCIAL MODELS: Examples 2 (of 4)

1. Suppose that X1, X2, ... are IID real random variables with E(|X1|) <∞. Let

Sn := X1 + ...+Xn.

(a) When is (Sn) a martingale? Specify the filtration.

(b) Show that

E [X1|Sn] =
Sn
n
.

(c) Compute E [Sn|X1] .

(d) Find an example of a process (Zn)n∈I adapted to some filtration (Fn)n∈I which
satisfies

E [Zn+1|Zn] = Zn but E [Zn+1|Fn] 6= Zn.

(Hint: Take X ∼ N (0, 1), I = {1, 2, 3}, Z1 = X1, Z2 = X1 + X2 and construct
Z3 − Z2 independent of Z2 but fully determined at times 1 and 2.)

2. Consider a (homogenous) Markov-chain (Xn)n∈Z+ on a finite state-space S with tran-
sition matrix P. A function f : S → R is considered as a column vector so that Pf
makes sense as matrix multiplication.

(a) Let Ex indicate that X0 = x ∈ S. Check that

[Pf ] (x) = Exf (X1) .

(b) Consider an arbitrary function g : S → R. Show that g (Xn) is σ (Xn)-measurable.
Set Fn = σ (Xk : 0 ≤ k ≤ n). Why is g (Xn) is Fn-measurable?

(c) Fix f : S → R and define

Mn = f(Xn)− f(X0)−
n−1∑
k=0

[(P − I) f ] (Xk) .

Show that (Mn,Fn) is a martingale.

(d) Call a function f : S → R sub-harmonic if f (x) ≤ [Pf ] (x) for all x. Show that
f(Xn) is a sub-martingale w.r.t. the filtration (Fn). (This explains the ”sub” in
the definition of sub-martingale.)

3. (a) Given a σ-algebra F , show that A ∈ F if and only 1A is F -measurable.

(b) Let τ be a stopping time with respect to the filtration (Ft)t∈Z+ . Show that 1{τ≥t+1}
is Ft-measurable for all t ∈ Z+.

(c) Let (Mt,Ft)t∈Z+ be a martingale and τ a stopping time w.r.t. the filtration
(Ft)t∈Z+ . Show directly (without appealing to martingale transforms) that the
stopped martingale

M τ
t := Mt∧τ

is still a martingale w.r.t. the filtration (Ft)t∈Z+ .
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4. (a) Suppose that X1, X2, ... are IID random variables with values in {−1,+1} so that
P (X1 = 1) = p, P (X1 = −1) = 1− p =: q for some fixed p ∈ (0, 1). The process

S0 = 0, St := X1 + ...+Xt, t ∈ N.

is known as the p/q-simple random walk started at 0 ∈ R. Show that the processes

Mt := (q/p)St , Nt := St − ESt

are martingales w.r.t. the filtration given by Ft := σ (X1, ..., Xt).

(b) Now assume p = q = 1/2, this gives rise to the simple symmetric random walk S.
Assume the random walk is started S0 = 1. Show that τ = inf {t ∈ Z+ : St = 0}
is a stopping time, possibly of value +∞.

(c) Apply the martingale convergence theorem to see that the stopped martingale Sτ

converges almost surely (to what?). Conclude that τ <∞ a.s..

∗ (d) Show that the martingale Sτ does not converge in L1.

(e) Now let S be the simple symmetric random walk S started at S0 = 0. Let a, b ∈ N,
check that τ = inf {t ∈ Z+ : St = −a or St = b} is a stopping time. Why is τ <∞
almost surely?

(f) Use the optional stopping (sampling) theorem to compute the probability that S
hits a before b. Find the expected time to hit −a or b.

5. Let X1, X2, . . . be IID random variables with EX1 = µ, VarX1 = σ2, and ϕ(θ) = EeθX1 ,
finite-valued for all θ. Let Sn = X1 + . . . + Xn, S0 = 0. Assuming that at time n the
values of X1, . . . , Xn are known, show that the following are martingales:

(a) {S2
k − σ2k : k ≥ 0} if and only if µ = 0;

(b) {eθSkϕ(θ)−k : k ≥ 0}.

6. At time 1 an urn contains a white and a red ball. Take out a ball at random and
replace it by two balls of the same color; this gives the new content of the urn at time
2. Keep iterating this procedure.

Let Yn be the number of white balls in the urn at time n, and let Xn = Yn/(n + 1).
Show that Xn is a.s. convergent to a random variable U . Compute the mean of U .
Can you compute the variance of U?

7. Prove that the existence of an EMM implies no-arbitrage in the discrete multi-period
setting. (You may assume S0

t ≡ 1 for all t.)
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8. Suppose that over two periods a stock price moces on a binomial tree

45
�

30 − 36
�

15
�

12 − 16
�

10

Determine for what values of the riskless rate r there is no arbitrage. If r = 1/4,
determine the equivalent martingale measure. With this value of r, find the time-zero
price and replicating portfolio for a European put option with strike 15 and expiry 2.

9. Consider a single-period trinomial model, with two assets, a riskless bond S0 and a
risky share S1. We have initially that both are worth 1:

S0
0 = 1 = S1

0 ,

and that S0
1 = 1 + r. The risky asset at time 1 will be worth a if the period was bad,

b if the period was indifferent, and c if the period was good, a < b < c, and these are
the only possibilities. We assume a < 1 + r < c.

(a) Find all the equivalent martingale measures for this model.

(b) For simplicity only, assume r = 0. Characterise all contingent claim with payoff
Y = (ya, yb, yb) at time 1 that can be replicated, that is for which there exists
θ ∈ R2 such that

Y = θ · S1

Determine the price of this contigent claim at time 0. Compute the expectation
of Y with respect to any equivalent martingale measure. Conclusion?

(c) How would your analysis extend to a single-period model with n assets?

10. A utility-maximising investor in a one-period binomial model has initial wealth w0 > 0
and utility U(x) =

√
x. If S0 denotes the riskless asset (worth 1 at time 0 and 1 + r

at time 1), and S1 denotes the risky asset, find the agent’s optimal investment in the
stock, and verify that this has the same sign as E[S1

1 − (1 + r)S1
0 ].
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