STOCHASTIC FINANCIAL MODELS: Examples 2 (of 4)

1. Suppose that X_1, X_2, \dots are IID real random variables with $E(|X_1|) < \infty$. Let

$$S_n := X_1 + \ldots + X_n.$$

- (a) When is (S_n) a martingale? Specify the filtration.
- (b) Show that

$$\mathbb{E}\left[X_1|S_n\right] = \frac{S_n}{n}.$$

- (c) Compute $\mathbb{E}[S_n|X_1]$.
- (d) Find an example of a process $(Z_n)_{n \in I}$ adapted to some filtration $(\mathcal{F}_n)_{n \in I}$ which satisfies

$$\mathbb{E}\left[Z_{n+1}|Z_n\right] = Z_n \text{ but } \mathbb{E}\left[Z_{n+1}|\mathcal{F}_n\right] \neq Z_n.$$

(Hint: Take $X \sim N(0,1)$, $I = \{1,2,3\}$, $Z_1 = X_1, Z_2 = X_1 + X_2$ and construct $Z_3 - Z_2$ independent of Z_2 but fully determined at times 1 and 2.)

- 2. Consider a (homogenous) Markov-chain $(X_n)_{n \in \mathbb{Z}^+}$ on a finite state-space S with transition matrix P. A function $f : S \to \mathbb{R}$ is considered as a column vector so that Pfmakes sense as matrix multiplication.
 - (a) Let \mathbb{E}^x indicate that $X_0 = x \in S$. Check that

$$[Pf](x) = \mathbb{E}^{x} f(X_1).$$

- (b) Consider an arbitrary function $g: S \to \mathbb{R}$. Show that $g(X_n)$ is $\sigma(X_n)$ -measurable. Set $\mathcal{F}_n = \sigma(X_k: 0 \le k \le n)$. Why is $g(X_n)$ is \mathcal{F}_n -measurable?
- (c) Fix $f: S \to \mathbb{R}$ and define

$$M_n = f(X_n) - f(X_0) - \sum_{k=0}^{n-1} \left[(P - I) f \right] (X_k).$$

Show that (M_n, \mathcal{F}_n) is a martingale.

- (d) Call a function $f: S \to \mathbb{R}$ sub-harmonic if $f(x) \leq [Pf](x)$ for all x. Show that $f(X_n)$ is a sub-martingale w.r.t. the filtration (\mathcal{F}_n) . (This explains the "sub" in the definition of sub-martingale.)
- 3. (a) Given a σ -algebra \mathcal{F} , show that $A \in \mathcal{F}$ if and only 1_A is \mathcal{F} -measurable.
 - (b) Let τ be a stopping time with respect to the filtration $(\mathcal{F}_t)_{t \in \mathbb{Z}^+}$. Show that $1_{\{\tau \ge t+1\}}$ is \mathcal{F}_t -measurable for all $t \in \mathbb{Z}^+$.
 - (c) Let $(M_t, \mathcal{F}_t)_{t \in \mathbb{Z}^+}$ be a martingale and τ a stopping time w.r.t. the filtration $(\mathcal{F}_t)_{t \in \mathbb{Z}^+}$. Show directly (without appealing to martingale transforms) that the stopped martingale

$$M_t^\tau := M_{t \wedge \tau}$$

is still a martingale w.r.t. the filtration $(\mathcal{F}_t)_{t\in\mathbb{Z}^+}$.

4. (a) Suppose that $X_1, X_2, ...$ are IID random variables with values in $\{-1, +1\}$ so that $\mathbb{P}(X_1 = 1) = p, \mathbb{P}(X_1 = -1) = 1 - p =: q$ for some fixed $p \in (0, 1)$. The process

 $S_0 = 0, S_t := X_1 + \ldots + X_t, \quad t \in \mathbb{N}.$

is known as the p/q-simple random walk started at $0 \in \mathbb{R}$. Show that the processes

$$M_t := (q/p)^{S_t}, \ N_t := S_t - \mathbb{E}S_t$$

are martingales w.r.t. the filtration given by $\mathcal{F}_t := \sigma(X_1, ..., X_t)$.

- (b) Now assume p = q = 1/2, this gives rise to the simple symmetric random walk S. Assume the random walk is started $S_0 = 1$. Show that $\tau = \inf \{t \in \mathbb{Z}^+ : S_t = 0\}$ is a stopping time, possibly of value $+\infty$.
- (c) Apply the martingale convergence theorem to see that the stopped martingale S^{τ} converges almost surely (to what?). Conclude that $\tau < \infty$ a.s..
- * (d) Show that the martingale S^{τ} does not converge in L^1 .
 - (e) Now let S be the simple symmetric random walk S started at $S_0 = 0$. Let $a, b \in \mathbb{N}$, check that $\tau = \inf \{t \in \mathbb{Z}^+ : S_t = -a \text{ or } S_t = b\}$ is a stopping time. Why is $\tau < \infty$ almost surely?
 - (f) Use the optional stopping (sampling) theorem to compute the probability that S hits a before b. Find the expected time to hit -a or b.
- 5. Let X_1, X_2, \ldots be IID random variables with $\mathbb{E}X_1 = \mu$, $\mathbb{V}arX_1 = \sigma^2$, and $\varphi(\theta) = \mathbb{E}e^{\theta X_1}$, finite-valued for all θ . Let $S_n = X_1 + \ldots + X_n$, $S_0 = 0$. Assuming that at time *n* the values of X_1, \ldots, X_n are known, show that the following are martingales:

(a)
$$\{S_k^2 - \sigma^2 k : k \ge 0\}$$
 if and only if $\mu = 0$;

(b)
$$\{e^{\theta S_k}\varphi(\theta)^{-k}: k \ge 0\}$$
.

 At time 1 an urn contains a white and a red ball. Take out a ball at random and replace it by two balls of the same color; this gives the new content of the urn at time 2. Keep iterating this procedure.

Let Y_n be the number of white balls in the urn at time n, and let $X_n = Y_n/(n+1)$. Show that X_n is a.s. convergent to a random variable U. Compute the mean of U. Can you compute the variance of U?

7. Prove that the existence of an EMM implies no-arbitrage in the discrete multi-period setting. (You may assume $S_t^0 \equiv 1$ for all t.)

8. Suppose that over two periods a stock price moces on a binomial tree

Determine for what values of the riskless rate r there is no arbitrage. If r = 1/4, determine the equivalent martingale measure. With this value of r, find the time-zero price and replicating portfolio for a European put option with strike 15 and expiry 2.

9. Consider a single-period trinomial model, with two assets, a riskless bond S^0 and a risky share S^1 . We have initially that both are worth 1:

$$S_0^0 = 1 = S_0^1$$

and that $S_1^0 = 1 + r$. The risky asset at time 1 will be worth *a* if the period was bad, *b* if the period was indifferent, and *c* if the period was good, a < b < c, and these are the only possibilities. We assume a < 1 + r < c.

- (a) Find all the equivalent martingale measures for this model.
- (b) For simplicity only, assume r = 0. Characterise all contingent claim with payoff $Y = (y_a, y_b, y_b)$ at time 1 that can be *replicated*, that is for which there exists $\theta \in \mathbb{R}^2$ such that

$$Y = \theta \cdot S_1$$

Determine the price of this contigent claim at time 0. Compute the expectation of Y with respect to any equivalent martingale measure. Conclusion?

- (c) How would your analysis extend to a single-period model with n assets?
- 10. A utility-maximising investor in a one-period binomial model has initial wealth $w_0 > 0$ and utility $U(x) = \sqrt{x}$. If S^0 denotes the riskless asset (worth 1 at time 0 and 1 + rat time 1), and S^1 denotes the risky asset, find the agent's optimal investment in the stock, and verify that this has the same sign as $\mathbb{E}[S_1^1 - (1+r)S_0^1]$.