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STOCHASTIC FINANCIAL MODELS

1 Utility and mean-variance analysis.

Why should financial models be stochastic? Randomness is an inescapable feature of financial
markets; although some agents may be better at predicting the future behaviour of markets,
even the most successful make losses from time to time. Our modelling therefore must involve
probabilistic elements.

A market is the interaction of agents trading goods and services, and the actions and choices of
individual agents are shaped by preferences over different contingent claims. A contingent claim
is simply a well-specified random payment, mathematically, a random variable. We shall suppose
that agents’ preferences are expressed through an expected utility representation, that is,

X � Y (Y is preferred to X) ⇐⇒ EU(X) ≤ EU(Y ), (1.1)

where the function U : R → [−∞,∞) is increasing (that is, non-decreasing), and may differ from
one agent to another.

Remarks. (i) We insist that the utility function U is non-decreasing, because it is reasonable to
assume that more is preferred to less. One can imagine situations where this may not be true (is
a ton of ice-cream really better that a litre?), but they tend to be somewhat artificial, and so we
exclude them from consideration1. (ii) The utility may be allowed to take the value −∞, both for
mathematical convenience, and to represent the possibility of an unacceptable outcome.

It is generally agreed that if an agent is offered the choice of a contingent claim X , or a certain
payment of the mean value EX , then he will prefer the second; this property is called risk-aversion,
for obvious reasons. In terms of the expected utility representation of the agent’s preferences, this
amounts to saying that U is concave.

Definition 1.1. A function U : R → [−∞,∞) is said to be concave if for all x, y ∈ R, for all
p ∈ [0, 1],

pU(x) + (1− p)U(y) ≤ U(px+ (1− p)y).

We shall use the notation
D(U) = {x : U(x) > −∞}

and
Do(U) = int(D(U))

1... though not entirely; quadratic U is sometimes considered because of its tractability, even though it is not
increasing.
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Remarks. (i) By Jensen’s inequality,

EU(X) ≤ U(EX),

so an agent will always prefer the certain mean of a contingent claim to the claim itself.

(ii) In the special case where the agent’s utility function is linear, we say that the agent is risk
neutral.

Examples.

(i) The function
U(x) = − exp(−γx) (x ∈ R),

where γ > 0 is a constant, is a concave increasing function, and commonly used as a utility, called
the constant absolute risk aversion (CARA) utility.

(ii) The function

U(x) =
x1−R

1− R
(x ≥ 0)

= −∞ (x < 0)

where R > 0, R 6= 1, is concave and increasing, and is the constant relative risk aversion (CRRA)
utility.

(iii) The function

U(x) = log x (x ≥ 0)

= −∞ (x < 0)

is the logarithmic utility. It can be thought of as the CRRA utility2 with R = 1.

(iv) For fixed α ∈ [0, 1), the function

U(x) = min(x, αx)

is concave and increasing.

(v) The function

U(x) = −1

2
x2 + ax

for a ≥ 0 is concave, but not increasing.

(vi) If U1 and U2 are utilities, and α1 and α2 are positive, then U ≡ α1U1+α2U2 is again a utility.

2For R ≥ 1, we understand U(0) = −∞.
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(vii) If {Uλ : λ ∈ Λ} is a family of utilities, then

U(x) ≡ inf
λ∈Λ

Uλ(x)

defines another utility U .

(viii) In fact, a converse of (vii) holds: if U is concave and upper semicontinuous (USC)3 then U
can be expressed as the infimum of a family of (not just concave but) linear functions:

U(x) = inf
λ
{Ũ(λ) + λx}.

Here, Ũ is the dual function of U , defined by

Ũ(λ) ≡ sup
x
{U(x)− λx}. (1.2)

How do we know that all the functions given above are actually concave? Calculus gives us a
way to check; on the way to this, we need the following useful characterisation of concavity.

Proposition 1.2. A function U : R → [−∞,∞) is concave if and only if for all points x1 < y1 ≤
x2 < y2 at which U is finite, the inequality

U(y1)− U(x1)

y1 − x1

≥ U(y2)− U(x2)

y2 − x2

(1.3)

holds.

Proof. Firstly, suppose that U is concave. Clearly it is sufficient to suppose that y1 = x2, so
for brevity write x1 = x < y1 = x2 = z < y2 = y. The inequality to be proved is

U(z) − U(x)

z − x
≥ U(y)− U(z)

y − z
,

or equivalently
(y − x)U(z) ≥ (z − x)U(y) + (y − z)U(x), (1.4)

which is easily seen to be implied by concavity. Conversely, if (1.3) holds, then (1.4) also holds,
and implies concavity.

Corollary 1.3. For concave U and x ∈ Do(U), the limits

lim
h↓0

U(x+ h)− U(x)

h
= ↑ lim

h↓0

U(x+ h)− U(x)

h
≡ DU(x+)

3A function f is upper semicontinuous if for all a ∈ R the set {x : f(x) < a} is open. Clearly if f is the infimum
of a family of continuous functions, then it must be USC.

3



and

lim
h↓0

U(x)− U(x− h)

h
= ↓ lim

h↓0

U(x)− U(x− h)

h
≡ DU(x−)

exist, and satisfy
DU(x−) ≥ DU(x+).

The right and left derivatives of U exist at every point of Do(U), and are equal except on a set
which is at most countable.

Corollary 1.4. If U is C2, then U ′′(x) ≤ 0 for all x if and only if U is concave.

Preferences lead nowhere without the possibility of choice. From now on, unless explicitly
mentioned to the contrary, we shall make the (small) assumption that

all utilities are strictly increasing.

If we consider an agent with wealth w and C2 utility U who is contemplating whether or not to
accept a contingent claim X , then he will do so provided

EU(w +X) > U(w).

If we suppose that X is ‘small’ so that we may perform a Taylor expansion, this condition is
approximately the same as the condition

U(w) + U ′(w)E(X) +
1

2
U ′′(w)EX2 > U(w).

Since U ′(w) > 0 - utility is increasing - and U ′′(w) < 0 - utility is concave - the benefits of a
positive mean EX are offset by the disadvantage of positive variance; the balance is just right (to
this order of approximation) when

2EX

EX2
= −U ′′(w)

U ′(w)
, (1.5)

where the right-hand side is the so-called Arrow-Pratt coefficient of absolute risk aversion. If we
consider instead the effect of the proposed gamble to be multiplicative rather than additive, the
decision for the agent will be to accept if

EU(w(1 +X)) > U(w).

Assuming that w > 0, a similar argument shows that to this order of approximation the agent
should accept when

2EX

EX2
≥ −wU ′′(w)

U ′(w)
, (1.6)

where the right-hand side is the so-called Arrow-Pratt coefficient of relative risk aversion. The
names of the first two examples of utilities are thus explained.
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1.1 Reservation and marginal prices.

Although the derivations above are not rigorous, they do build our intuition. Developing this
intuitive theme a bit further, let us consider an agent with utility U who is able to choose any
contingent claim X from an admissible set A; he will naturally choose X to achieve

sup
X∈A

EU(X); (1.7)

we shall suppose that the supremum is achieved at X∗ ∈ A. In the special case where A is an
affine space4 A = X∗ + V, we have therefore that for all ξ ∈ V and all t ∈ R

EU(X∗) ≥ EU(X∗ + tξ),

formally differentiating with respect to t gives us the conclusion

E[ U ′(X∗)ξ ] = 0 for all ξ ∈ V. (1.8)

Definition 1.5. The utility-indifference price π(Y ) for a contingent claim Y is defined by

sup
X∈A

E U(X + Y − π(Y )) = sup
X∈A

E U(X). (1.9)

The interpretation of this definition is clear; if you were to agree to pay some price p in order to
receive the contingent claim Y , then π(Y ) is the largest price you would be willing to pay for it.

The first thing to know about the utility-indifference price is that it is concave.

Proposition 1.6. The map Y 7→ π(Y ) is concave.

Proof. Suppose that Y1, Y2 are two random variables, and p1, p2 are two non-negative reals,
p1 + p2 = 1. To simplify, suppose that the supremum in (1.7) is achieved at X∗, and that

E U(X∗
1 + Y1 − π(Y1)) = E U(X∗

2 + Y2 − π(Y2)) = E U(X∗). (1.10)

Now we argue as follows (with X̄ = p1X
∗
1 + p2X

∗
2 and Ȳ = p1Y1 + p2Y2 ):

sup
X∈A

E U(X + Ȳ − π(Ȳ )) = E U(X∗)

= p1E U(X∗
1 + Y1 − π(Y1)) + p2E U(X∗

2 + Y2 − π(Y2))

≤ E U(X̄ + Ȳ − p1π(Y1)− p2π(Y2))

≤ sup
X∈A

E U(X + Ȳ − p1π(Y1)− p2π(Y2)).

4That is, for any X1, X2 ∈ A and t ∈ R, tX1 + (1− t)X2 ∈ A. Equivalently, there exists a vector space V such
that for any X ∈ A we have A = X + V .
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Monotonicity of U forces the conclusion

p1π(Y1) + p2π(Y2) ≤ π(Ȳ ) (1.11)

as required. �

If we now consider some non-negative contingent claim Y , then the map t 7→ π(tY ) is concave,
and obviously non-decreasing. Equally obviously, π(0) = 0, so by concavity we learn that the map

t 7→ fY (t) ≡
π(tY )

t

defined on R\{0} is monontone decreasing, and so in particular limits at zero from either side
exist. If we now suppose that A is an affine space, and that for each t 6= 0

sup
X∈A

EU(X − tY + π(tY )) = EU(X∗
t − tY + π(tY )),

then

EU(X∗) = EU(X∗
t − tY + π(tY ))

= EU(X∗ + (X∗
t −X∗)− tY + tfY (t))

= E[U(X∗) + U ′(X∗)
{

(X∗
t −X∗)− tY + tfY (t)

}

] + o(t)

= E[U(X∗) + U ′(X∗)
{

−tY + tfY (t)
}

] + o(t)

where to pass from the third to the fourth line we have used (1.8), and hence

E[U ′(X∗)Y ]

E[U ′(X∗) ]
= lim

t→0

π(tY )

t
(1.12)

This expression is the agent’s marginal price for Y , that is, the price per unit at which he would
be prepared to buy or sell an infinitesimal amount of Y . Notice that the marginal price is linear in
the contingent claim, in contrast to the bid and ask prices. If prices had been derived from some
economic equilibrium, and the contingent claim Y was one which was marketed, then the market
price of Y would have to equal the marginal price of Y given by (1.12), and this would have to
hold for every agent. This is not to say that for every agent the marginal utility of optimal wealth
would have to be the same; in general they are not. But the prices obtained by each agent from
their marginal utility of optimal wealth via (1.12) would have to agree on all marketed contingent
claims.

This heuristic discussion provides us with firm guidance for our intuition, and the form of the
prices frequently fits (1.12). Although there are many steps where the analysis could fail, where
we assume that suprema are attained, or that we can differentiate under the expectation, the most
common reason for the above analysis to fail is that A is not an affine space!
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1.2 Mean-variance analysis and the efficient frontier.

Looking at (1.5) and (1.6), it is natural5 to think that if we are given a choice of contingent claims
X , all with the same mean, then we should take the one with smallest variance. To take an
explicit situation, consider a single-period model with d assets in which an agent may invest; at

time 0 the price of the jth asset is Sj
0, non-random, and at time 1 this asset delivers a random

quantity Sj
1 of the only consumption good in the economy; at time 1, agents receive their due

goods and consume them. Introducing the notation

µ = ES1, V = cov(S1) ≡ E

[

(S1 −ES1)(S1 − ES1)
T

]

,

if at time 0 the agent chooses to hold θj units of asset j (j = 1, . . . , d), then at time 1 his portfolio
is worth

w1 = θ · S1 ≡
d

∑

j=1

θjSj
1.

Thus
Ew1 = θ · µ, var(w1) = θ · V θ.

If the agent now requires to choose θ to give a predetermined mean value Ew1 = m and to have
minimal variance, then his optimisation problem is to find

min
1

2
θ · V θ subject to θ · µ = m, θ · S0 = w0. (1.13)

The second constraint is the budget constraint, that the cost at time 0 of the chosen portfolio must
equal the agent’s wealth at time 0. The problem can be expressed more compactly as

min
1

2
θ · V θ subject to AT θ = b, (1.14)

where

A =
(

µ S0

)

, b =

(

m
w0

)

(1.15)

To solve this, we introduce the Lagrange multiplier λ = (λ1, λ2)
T and the Lagrangian

L =
1

2
θ · V θ + λ · (b−AT θ)

Assuming V is non-singular, this is minimised by choosing

θ = V −1Aλ; (1.16)

The undetermined multiplier λ is fixed by the constraint values in (1.14); assuming that µ is not
a multiple of S0, we obtain

λ = (AT V −1A)−1b (1.17)

5... but in general not correct ...
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solved by ( ∆ ≡ (µ · V −1µ)(S0 · V −1S0)− (S0 · V −1µ)2 )

λ = ∆−1

(

S0 · V −1S0 −S0 · V −1µ
−µ · V −1S0 µ · V −1µ

)(

m
w0

)

The variance is thus
θ · V θ = λTATV −1Aλ = λ · b

which is more simply

∆−1(m2S0 · V −1S0 − 2mw0S0 · V −1µ+ w2
0µ · V −1µ), (1.18)

which is quadratic in the required mean m. The variance is minimised to value

w2
0

S0 · V −1S0

when we take m = w0(S0 · V −1µ)/(S0 · V −1S0). We can display the conclusions of this analysis
graphically, as in Figure 1.2. For any chosen value of the mean m, corresponding to a given level
in the plot Figure 1.2, values of the portfolio variance corresponding to points to the left of the
parabola are not achievable, wheras points on and to the right of the parabola are. The parabola
is called the mean-variance efficient frontier.
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Figure 1: Mean-variance efficient frontier; achievable combinations of the mean and variance are
to the right of the parabola.

Remarks. We noted in an earlier footnote that while it is natural to think that from among all
available contingent claims with given mean we should choose the one with the smallest variance,
this is not in general correct. The reason is not hard to see; assuming our agent has expected-
utility preferences, if two contingent claims are considered equally desirable if they have the same
mean and the same variance, then the utility must be a function only of the mean and the variance
- in effect, the ‘utility’ is quadratic, which is disqualified because it is not increasing.
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Despite this, the kind of mean-variance analysis set forth above, and graphs such as Figure 1.2
of the efficient frontier, are ubiquitous in the practice of portfolio management. Why should this
be? There are two reasons:

(i) This analysis is just about as sophisticated as you can expect to put across to the mathemati-
cally untrained;

(ii) In one very special situation, when S1 is multivariate normal, the mean-variance analysis in
effect amounts to the correct expected-utility maximisation. We study this situation right now,
assuming that agents have CARA utilities.

Example: CARA/Gaussian problem, no riskless asset. Recall the setup: this is a single-

period model, in which an agent invests in d assets. At time 0, the jth asset’s price is Sj
0, and at

time 1 it delivers Sj
1 of the consumption good; we will speak of St = (S1

t , . . . , S
d
t )

T as the vector
of asset prices at time t, though there is no reason why prices should be comparable across the
two time periods, and indeed at period 0 there is a scaling indeterminacy, as it is only the ratio
of asset prices which is significant.

If at time 0 the agent chooses to hold θj units of asset j (j = 1, . . . , d), then at time 1 his
portfolio is worth

w1 = θ · S1 ≡
d

∑

j=1

θjSj
1.

Suppose that the agent has CARA utility, and so aims to maximise

E − exp(−γw1). (1.19)

Concerning the returns on the assets, we shall assume that the vector S1 has a multivariate normal
distribution, with mean vector µ and covariance matrix V . We shall assume V is non-singular:
presently we look at what happens when one of the assets is riskless. It is well known that for
x ∈ Rn,

E exp(x · S1) = exp(x · µ+
1

2
x · V x),

where x · y ≡ xTy denotes the scalar product of x and y, so the agent’s objective is to minimise

E exp(−γθ · S1) = exp(−γθ · µ+
1

2
γ2θ · V θ).

Of course, the portfolio θ cannot be chosen unrestrictedly; the time-0 value must equal the time-0
wealth of the agent:

θ · S0 = w0.

The agent therefore faces the constrained optimisation problem

min{−γθ · µ+
1

2
γ2θ · V θ} subject to θ · S0 = w0.
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Using the Lagrangian method, we convert this problem into the unconstrained minimisation of

−γθ · µ+
1

2
γ2θ · V θ + γλ(w0 − θ · S0).

Differentiating with respect to θ gives us the equation

γV θ = µ+ λS0, (1.20)

which is solved by taking
θ = γ−1V −1(µ+ λS0).

To match the constraint, we take

λ =
γw0 − S0 · V −1µ

S0 · V −1S0

,

and hence the optimal θ has the explicit form

θ = γ−1V −1µ+
γw0 − S0 · V −1µ

γS0 · V −1S0
V −1S0. (1.21)

Remarks. (i) Notice that the optimal portfolio (1.2) is a weighted average of just two portfolios,
the minimum-variance portfolio V −1S0, which minimises the variance of S1 subject to the initial
budget constraint θ · S0 = w0, and the diversified portfolio V −1µ. This is an example of a mutual

fund theorem.

(ii) Why did we choose to maximise objective (1.19), instead of maximising the utility of the
expected gain

E − exp(−γθ · (S1 − S0)), (1.22)

say? It is arguable that this is the criterion that an investor should be most concerned with; by
taking objective (1.22), we now free the admissible portfolios from the initial budget constraint
θ ·S0 = w0, and in effect allow borrowing at time 0 to fund the portfolio choice. But this is exactly
the problem; so far in the model as described, there is no mechanism for borrowing! There is no
way to transfer obligations from one time period to another other than through holding the shares.
The value θ · S0 is the value of a portfolio at time 0, and cannot be compared with θ · S1, the
value one period later; they are denominated in completely different units, time-0 consumption
and time-1 consumption.

Example: CARA/Gaussian problem with a riskless asset. Let us take exactly the situation
of the previous example, but add one more asset, sometimes referred to as the bank account and
denoted S0, whose return is riskless6. We shall suppose that S0

0 = 1, S0
1 = 1 + r, where r is the

6That is, the variance of S0
1 is zero. We shall therefore use the equivalent notations µ0 and S0

1 interchangeably.
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rate of interest on the bank account. Asset zero now permits us to borrow risklessly; we may
borrow amount x at time 0, provided we pay back amount (1 + r)x at time 1.

If the agent chooses at time 0 a portfolio θ = (θ1, . . . θd) of the risky assets, the cost of this will
be θ · S0, so the optimization problem for the agent will be to

min
θ

E exp(−γ{ θ · S1 + (1 + r)(w0 − θ · S0)}), (1.23)

where we think that the bank account, initially at wealth w0 gets changed to w0− θ ·S0 when the
agent buys his desired portfolio, and this quantity of money gets scaled up by (1 + r) by time 1.
Simple calculation turns this problem into the problem

min
θ

[

1

2
γθ · V θ + θ · (µ− (1 + r)S0)

]

, (1.24)

which is solved by

θ = γ−1θM ≡ γ−1V −1(µ− (1 + r)S0). (1.25)

Remarks. (i) Once again, the optimal portfolio is a weighted average of the minimum-variance
portfolio and the diversified portfolio, though this time the weights are in fixed proportions. The
portfolio θM is referred to as the market portfolio, for reasons we shall explain shortly.

(ii) Notice that in contrast to the solution (1.2) to the previous example, the best value of θ does
not depend on w0, the initial wealth of the agent. How can this be reconciled with the initial
budget constraint? Very simply: the agent takes up the portfolio (1.25) in the risky assets, and
his holding θ0 of the riskless asset adjusts to pay for it!

(iii) Looking at (1.25), we see that the more risk-averse the agent is (that is, the larger γ), the
less he invests in the risky assets - evidently sensible. If we took the simple special case where V
were diagonal, we see that the position in asset j is

µj − (1 + r)Sj
0

γVjj

,

proportional to the excess mean return µj − (1 + r)Sj
0 of asset j, that is, the average amount

by which investing in asset j improves upon investing the same initial amount Sj
0 in the riskless

asset. We also see that the higher the variance of asset j, the less we are prepared to invest in it,
again evidently sensible.
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1.3 Capital Asset Pricing Model (CAPM).

Simple algebra takes us from the result of the previous example all the way to a Nobel prize-
winning discovery! For each asset i, we define the beta of that asset

βi ≡ cov(Si
1, θM · S1)

var(θM · S1)

=
(V θM )i

θM · V θM

=
(µ− (1 + r)S0)

i

θM · V θM

Now consider an agent who at time 0 has wealth θM · S0; if he chooses to invest that wealth in
the risky assets according to the market portfolio, he will have θM ·S1 at time 1, a random wealth
with mean

µM ≡ θM · µ.
On the other hand, he could invest his initial wealth in the riskless asset, in which case at time 1
he would have a certain

(1 + r)θM · S0.

On average, then, by investing in the risky assets he is better off by

µM − (1 + r)θM · S0 = θM · V θM .

Simply rearranging the definition of βi then,

µi − (1 + r)Si
0 = excess return of asset i

= βi(µM − (1 + r)θM · S0) (1.26)

= βi × (excess return of the market portfolio)

Is this a profound result, or merely a tautologous reworking of the definition of βi? It is both; the
profundity lies in the fact that (1.26) expresses a relation between on the one hand the mean rates
of return of individual assets and of the market portfolio, and on the other, the variances and
covariances of asset returns, which could all be estimated very easily from market data7, thereby
providing a test of the CAPM analysis. It is rare to find a verifiable prediction from economic
theory; sadly, it turns out in practice to be very hard to make reliable estimates of rates of return.

7The market portfolio would be taken to be a major share index.
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Aside. Let us look at some typical figures to substantiate the preceding comment. Suppose that
we model an asset as a log Brownian motion8, so that log(St) = σWt + αt for some constants
α and σ. If one unit of time corresponds to one year, then typical values for α would be of the
order of 10% − 30% and for σ of the order of 20% − 80%. To fix ideas, let us suppose that
σ = 0.2 = α. Suppose we observe the asset at intervals of δ = 1/n, so that we see a sequence of
IID random normal variables log(Sjδ)− log(S(j−1)δ) ≡ Xj for j = 1, 2, . . . , N . The common mean
is αδ and the common variance is σ2δ. For concreteness, we shall suppose that n = 250 as there
are approximately 250 trading days in any year. Then the MLE of α based on these observations
will be

α̂ = nX̄ ≡ n

N

N
∑

j=1

Xj ∼ N(α,
nσ2

N
).

If we want N to be so large that the 95% confidence interval is [α̂ − 0.01, α̂ + 0.01] (roughly, we
are 95% certain that the mean is between 0.19 and 0.21), then we need

1.96σ

√

n

N
= 0.01,

or again
N

n
= (

196

5
)2 = 1536.64;

so for this degree of certainty concerning the rate of return of the asset, we need to observe the
process for over 1500 years!! We can similarly estimate the accuracy of the MLE of the variance,
and this is typically much better; more to the point, by increasing the frequency of observation
we can improve the accuracy of our estimate of σ arbitrarily, but increasing the frequency of
observation does not affect the accuracy of our estimate of α, since the sum of an IID Gaussian
sample is sufficient for the mean.

Again, let us consider how long we would have to observe in order for 0 to be outside the one-
sided 95% confidence interval with probability at least 0.95. The 95-percentile of the standard
Gaussian distribution is at θ = 1.6449, and we shall take the MLE

α̂ =
log(ST )− log(S0)

T
∼ N(α, σ2/T )

of α. We are therefore asking how big T must be in order that

P(α̂ > θσ/
√
T ) = 0.95.

In terms of a standard normal variable Z, we want

0.95 = P(α + Zσ/
√
T > θσ/

√
T ) = P(Z > θ − α

√
T/σ),

implying that α
√
T/σ = 2θ; when α = σ = 0.2, this means that we have to wait 10.823 years

even to be 95% certain that α > 0 with probability 0.95!

8We will have more to say on Brownian motion later; the remarks here will be entirely self-contained
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The moral of these little calculations is that we know the mean with very little precision; so
while the optimal portfolios calculated above may be correct if we happen to know the true mean,
we cannot expect that plugging a (very erroneous) point estimate into a formula calculated on the
assumption that the mean was known will necessarily be much good in practice. It is not; and we
really need to redo the entire analysis on the assumption that the mean µ of S1 is itself normally
distributed. Not surprisingly, it will turn out that under this more realistic assumption the agent
will invest less in the risky asset. But the size of the effect on the maximised utility is not as bad
as we might expect from the error in the estimate of µ; the reason for this is that the expected
utility depends smoothly on the portfolio weights chosen, so at the maximum a small change of
O(h) in the portfolio weights produces a (much smaller) change of O(h2) in the expected utility!

1.4 Equilibrium pricing.

We cannot pass by this place without pausing to see how central ideas of economic equilibrium
work in the particular example we are studying. We have been looking at a vector of n assets
whose values at time 1 are multivariate normal random variables, and whose values at time 0 are
given constants; but where did those constants come from? How were they determined? Why are
they not just the means of the contingent claims at time 1? An economist would answer these
questions by saying that the time-0 prices are equilibrium prices, determined by the agents in
the market and their interaction. If the time-0 prices are given to us, we have just seen how to
compute for each agent the optimal holding of the various assets; the central idea of equilibrium
analysis (due to Arrow and Debreu) is that we now adjust the prices until the markets clear; that
is, the supply and demand are matched.

So let us suppose in the context of the previous example that each of the risky assets, thought
of as shares in various enterprises, are in unit net supply; there is one unit of enterprise 1, one
of enterprise 2, ... Concerning the riskless asset, let us suppose it is in zero net supply; riskless
borrowing requires one agent to give another a promise to pay a named sum at time 1, and the
total of all such promises held exactly equals the total of all such promises made. Since there is an
indeterminacy of scale in the time-0 prices (prices could be in USD, EUR, JPY, ...), let us suppose
that S0

0 = 1. Concerning the agents who make up the market, we shall suppose that there are K

of them, and that each has a CARA utility, the kth having coefficient of absolute risk aversion γk.

From (1.25), agent k is going to hold the portfolio

θk = γ−1
k θM

in the risky assets, so that the total holdings of all the agents will be

K
∑

k=1

θk = Γ−1θM = Γ−1V −1(µ− (1 + r)S0),
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where Γ−1 =
∑

k γ
−1
k . Market clearing therefore requires that

1 =

K
∑

k=1

θk = Γ−1V −1(µ− (1 + r)S0),

and hence we deduce that
S0 = (µ− ΓV 1)/µ0. (1.27)
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2 Arbitrage pricing theory in discrete time.

Orientation

In the examples studied in Chapter 1, we worked with a single period model and Gaussian returns;
in this Chapter, we shall drop these assumptions and investigate very simple discrete-time models,
beginning with single-period models, and later moving on to multi-period models. We shall
continue with the notation already introduced: there are d risky assets, the price of the kth at
(integer) time t being denoted Sk

t , and we shall also suppose that there is a strictly positive zero’th
asset, referred to as a numeraire asset. We use the notations

St ≡ (S1
t , . . . , S

d
t )

T , S̄t ≡ (S0
t , S

1
t , . . . , S

d
t )

T .

We are going to consider portfolio processes

θ̄t = (θ0t , θ
1
t , . . . , θ

d
t )

T

where we interpret θjt as the number of units of asset j chosen on day t − 1 and held through to
day t. In this notation then, the gain realised on day t for the investment from day t− 1 through
to day t will simply be

θ̄t ·∆S̄t ≡ θ̄t · (S̄t − S̄t−1). (2.1)

Naturally, we would expect that when we choose the portfolio θ̄t, on day t− 1, we should only be
able to use information available to us on day t− 1; we shall call such a process previsible, though
the formal definition will have to wait til later when we have some more notation at our disposal.
We shall also restrict attention to self-financing portfolios.

Definition 2.1. A portfolio (θ̄t)t≥0 is called self-financing if

(θ̄t+1 − θ̄t) · S̄t = 0. (2.2)

Remark. The interpretation is clear; when we change our portfolio at time t from θ̄t to θ̄t+1

there should be no change in our wealth. Using this, it is easy to verify that for a self-financing
portfolio process with associated wealth process wt ≡ θ̄t · S̄t we shall have

wT − w0 =

T
∑

t=1

θ̄t ·∆S̄t ≡ (θ̄ · S̄)T ; (2.3)

that is, the change in wealth equals the total gains from trade. The process (θ̄ · S̄) is called the
gains-from-trade process. Notice the notational difference θ̄t · S̄t 6= (θ̄ · S̄)t, though as we see from
(2.3) for a self-financing portfolio the two sides differ only by w0.

We introduce the notation
S̃t ≡ S̄t/S

0
t , w̃t ≡ wt/S

0
t (2.4)
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for the assets and wealth denominated in units of the numeraire asset S0. We shall speak of the
discounted wealth process w̃, because often the numeraire asset will be a bank account growing at
a constant rate. We have the following simple observation.

Proposition 2.2. The discounted gains from trade of a self-financing portfolio process satisfies

w̃t − w̃t−1 = θ̄t · (S̃t − S̃t−1) =

d
∑

j=1

θjt (S̃
j
t − S̃j

t−1) (2.5)

Proof. We have

w̃t − w̃t−1 =
θ̄t · S̄t

S0
t

− θ̄t−1 · S̄t−1

S0
t−1

=
θ̄t · S̄t

S0
t

− θ̄t · S̄t−1

S0
t−1

= θ̄t ·∆S̃t.

The second equality of (2.5) is clear because S̃0
t = 1 for all t. �

It is now clear that any statement about wealth processes and self-financing portfolios can be
translated into equivalent statements in terms of discounted wealth and discounted assets. This
has a number of advantages:

(i) The numeraire asset in discounted terms is identically 1;

(ii) Any portfolio process θt = (θ1t , . . . , θ
d
t ) can be turned into a self-financing portfolio by

defining
θ0t = θ0t−1 + (θt−1 − θt) · (S̃1

t , . . . , S̃
d
t )

T . (2.6)

(iii) The key concept of an arbitrage is stated in terms of the discounted assets.

Definition 2.3. A (self-financing previsible) portfolio process (θ̄t)t≥0 is an arbitrage for the asset
price process (S̄t)t≥0 over [0, T ] if

P
[

w̃T − w̃0 ≥ 0
]

= 1, (2.7)

P
[

w̃T − w̃0 > 0
]

> 0. (2.8)

Remark. Why did we insist on working with discounted wealth, and not with wealth? If we
simply replaced w with w̃, there would always be an arbitrage as soon as there was an interest-
bearing bank account! Indeed, it we put 1 unit of money in the bank account at time 0, then by
time T it will be worth (1+ r)T > 1 and this would be an arbitrage if we restated (2.3) in terms of
w, not w̃. The point of an arbitrage is that it is an opportunity to do better than the riskless bank
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account with certainty, and if you could do that, then you would borrow a vast sum of money,
invest it in the arbitrage, and then when it came to pay back your borrowings you could be sure
to do this, with probably some additional wealth also.

So what now? For the rest of this discussion, we will just assume that we have rebased everything
in terms of the numeraire asset zero, so that S0

t = 1 for all t, so that the gains from trade of a
self-financing portfolio will be just

(θ · S)T =
T
∑

t=1

θt · (St − St−1). (2.9)

An agent who starts from wealth w0 and plays the market until time T may therefore generate
any wealth in

A ≡ {w0 + (θ · S)T : θ previsible, self-financing} (2.10)

which is manifestly an affine space. Now we are going to invoke the results on reservation and
utility-indifference prices from Section 1.1; if there is some X∗ ∈ A which maximizes E[U(X)],
then as at (1.8), we have

E[U ′(X∗)(θ · S)T ] = 0 (2.11)

for any θ. This then leads us to define a pricing measure Q equivalent to P by the recipe

dQ

dP
∝ U ′(X∗). (2.12)

Straightforward results from martingale theory allow us to conclude from (2.11) that S is a Q-
martingale. If there is no maximizer of E[U(X)], then as we shall see9, there is an arbitrage.
These statements constitute the very important Fundamental Theorem of Asset Pricing (FTAP).

2.1 Single-period FTAP.

We are going to establish the FTAP in the simplest setting, where there are just two times, time
0 and time 1. When returns were jointly Gaussian, we already studied what happens if we have
an agent with CARA utility, but now we are not making any joint Gaussian assumption, but are
working with a completely general joint distribution of returns.

Definition 2.4. A probability Q is absolutely continuous with respect to P if there is an integrable
non-negative function f such that for all events A

Q(A) =

∫

A

f dP.

The function f is referred to as the density of Q with respect to P, and the notation

f =
dQ

dP

is used. When f > 0 P-almost-surely, we say that Q and P are equivalent.

9.. for the special case of CARA utility ...
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Remarks. The Radon-Nikodym Theorem states that Q is absolutely continuous with respect
to P if and only if every P-null event (that is, an event A for which P(A) = 0) is also Q-null.

Theorem 2.5. Assume that S0
t = 1 for all t ≥ 0. Then the following are equivalent:

(i) There is no arbitrage;

(ii) There exists some probability Q equivalent to P such that

EQ
[

S1

]

= S0 (2.13)

When this condition holds, we may take

dQ

dP
∝ exp(−θ · S1 − 1

2
|S1|2) (2.14)

for some θ ∈ Rn.

Proof. Write X ≡ S1 − S0 for brevity. We shall without loss of generality make the non-
degeneracy assumption that P(θ · X = 0) < 1 for all non-zero θ ∈ Rn, for otherwise X lies in
some proper subspace of Rd, and there are linear dependencies among the assets. We could then
discard redundant assets and reduce to a set for which the non-degeneracy assumption holds.

(ii) ⇒ (i) : If θ were an arbitrage, we shall have from (2.13) that

EQ
[

θ · S1

]

= θ · S0, (2.15)

and the left-hand side is non-negative, the right-hand side is non-positive, so both must be zero.
But this means that P(θ · S1 = 0) = 1 = P(θ · S0 = 0), so θ is not an arbitrage.

(i) ⇒ (ii) : We must prove the existence of some equivalent martingale measure assuming that
there is no arbitrage. This is somewhat more involved, but we will actually construct such a
measure, using the principle of maximisation of expected utility; the result (1.8) is in effect what
we need. For this, define the function

θ 7→ ϕ(θ) ≡ E exp(−θ ·X − 1

2
|X|2)

E exp(− 1

2
|X|2) .

This function is finite-valued10, non-negative, continuous, convex and differentiable. If infθ ϕ(θ)
is attained at some θ∗, then by differentiating we learn that

E[ exp(−θ∗ ·X − 1

2
|X|2)X ] = 0,

10The interpretation of the proof in terms of a utility-maximisation argument is far more direct if we had simply
used ϕ0(θ) = E exp(−θ ·X), for then we are literally maximising the CARA utility of θ ·X . The snag is that this
expectation need not be finite for all θ, whereas the definition given for ϕ is certain to be finite-valued. If ϕ0 were
finite-valued, we could have used this instead of ϕ.
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so defining Q by

dQ

dP
= c−1 exp(−θ∗ ·X − 1

2
|X|2)

c = E exp(−θ∗ ·X − 1

2
|X|2)

gives (2.13).

So the only thing that could go wrong is that the infimum infθ ϕ(θ) is not attained. We shall
now prove that this can only happen if there is arbitrage, in contradiction of our hypothesis; it
follows then that the infimum is attained, and we do have an equivalent martingale measure.

If we consider the sets

Fα ≡ {θ ∈ Rd : |θ| = 1, ϕ(αθ) ≤ 1}, (α ≥ 0)

we see that these are closed subsets of a compact subset of Rd, and it is not hard to see11 that
Fβ ⊆ Fα for all 0 ≤ α ≤ β. By the Finite Intersection Property, either the intersection ∩αFα is
non-empty, or for some α, Fα = ∅. If the infimum is not attained, then it is less than 1 = ϕ(0)
and there exist ak such that ϕ(ak) decrease to the infimum; these ak cannot be bounded, else
some subsequence would converge to a point where the infimum is attained, so we must have a
sequence of points tending to infinity where ϕ is less than 1, and so ∩αFα is non-empty. Thus
there is some unit vector a such that

ϕ(ta) =
E exp(−ta ·X − 1

2
|X|2)

E exp(− 1

2
|X|2) ≤ 1

for all t ≥ 0, and this can only happen if

P[a ·X < 0] = 0.

Thus
a ·X = a · (S1 − S0) ≥ 0, (2.16)

and with positive P-probability (non-degeneracy!) this inequality is strict. We therefore take a
portfolio consisting of a in the risky assets, and −a ·S0 in the riskless asset; at time 0 this is worth
nothing, and at time 1 it is worth a ·X . Because of (2.16), this portfolio is an arbitrage.

�

Remarks. The assumption that S0 is identically 1 is restrictive, asymmetric and unnecessary;
the notion of arbitrage for any (d+ 1)-vector S̄ of assets does not require this, and in fact we can
deduce a far more flexible form of the above result.

Corollary 2.6. (Fundamental Theorem of Asset Pricing, 0). Let (S̄t)t∈Z+ be a (d+1)-vector
of asset prices, and assume:

11... by convexity of ϕ and the fact that ϕ(0) = 1 ...

21



Assumption (N): Among the assets S0, . . . , Sd, there is one which is strictly positive.

Select a strictly positive asset N from the d+ 1 assets. Then the following are equivalent:

(i) There is no arbitrage;

(ii) There exists some probability Q equivalent to P such that

EQ
[

S1/N1

]

= S0/N0. (2.17)

The probability Q is referred to as an equivalent martingale measure (or sometimes an equivalent
martingale probability.)

Proof. It is evident that θ̄ is an arbitrage for S̄ if and only if it is an arbitrage for S̃, where
we define

S̃i
t ≡ Si

t/Nt.

The result follows by applying Theorem 2.5 to S̃ (assume without loss of generality that N = S0.)

�

Remarks. (i) The strictly positive asset N used above is referred to as a numeraire. We have
often considered a situation where there is a single riskless asset (referred to variously as the
money-market account, the bond, the bank account, ..) in the market, and it is very common
to use this asset as numeraire. It turns out that this will serve for our present applications, but
there are occasions when it is advantageous to use other numeraires. Note that the Fundamental
Theorem of Asset Pricing does not require the existence of a riskless asset.

(ii) Note that the Fundamental Theorem of Asset Pricing does not make any claim about unique-
ness of Q when there is no arbitrage. This is because situations where there is a unique Q are rare
and special; when Q is unique, the market is called complete. We shall have more to say about
this presently.

(iii) Theorem 2.6 tells us in a single-period setting that when there is no arbitrage, there exists
an equivalent martingale measure. The meaning of the term ‘equivalent’ has been defined, but we
need to explain what a martingale is.

Definition 2.7. A stochastic process (Xn)n≥0 is called12 a supermartingale if for each n ≥ 0

Xn ≥ E[Xn+1|X0, X1, . . . , Xn]. (2.18)

If (−Xn)n≥0 is a supermartingale, the process (Xn)n≥0 is called a submartingale, and a process
which is both a supermartingale and a submartingale is called a martingale.

12We give a definition of a martingale which is slightly less general than the correct one; see, for example, the
book of Williams () for the full story, which requires concepts from measure-theoretic probability. The current
account tells no lies, however; anything which is a martingale in the sense of the definition we have given here will
indeed be a martingale according to the proper definition.
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Of course, X is a martingale if the inequality (2.18) is an equality for all n. Equipped with this
terminology, we can now state the full discrete-time Fundamental Theorem of Asset Pricing.

Theorem 2.8. (Fundamental Theorem of Asset Pricing). Let (S̄t)t∈Z+ be a (d+ 1)-vector
of asset prices, and assume:

Assumption (N): Among the assets S0, . . . , Sd, there is one which is strictly positive.

Select a strictly positive asset N from the d+ 1 assets. Then the following are equivalent:

(i) There is no arbitrage;

(ii) There exists some probability Q locally13 equivalent to P such that

(

S̄t

Nt

)

t∈Z+

is a Q-martingale. (2.19)

The probability Q is referred to as an equivalent martingale measure.

(iv) We have just proved a very general form of the Fundamental Theorem of Asset Pricing
in discrete time, though only in the single-period situation. Its extension to the multi-period
situation is not essentially difficult, though there are some technical points to be handled14 to give
the result in its simplest and strongest form. There is an analogous result in continuous time, but
this is quite deep and subtle (see Delbaen & Schachermayer ()); the first subtlety is in framing the
definition of arbitrage correctly! We shall not dwell on the details of extending to the multi-period
case in a general context (see Rogers () for these), but shall for the rest of this chapter consider
only very simple and explicit models where we can characterise the equivalent martingale measure
completely, and perform calculations.

(v) To link the statement of Theorem 2.8 with the discussion at the beginning of this Chapter,
we need to observe that if we define

Zt ≡
dQ

dP

∣

∣

∣

∣

Ft

,

then Z is a P-martingale, and for any Q martingale M the product ZM is a P-martingale. None of
these facts is hard to prove, but they do require a basic familiarity with definition and properties
of conditional expectation which we are not here assuming. But given these facts, we then define

ζt =
Zt

Nt
,

and the pricing expression (??) is seen to amount to the same as (2.19).

13If FT denotes the set (σ-field) of all events which are known at time T , then Q will be equivalent to P on
(Ω,FT ) for every T . It can happen that Q is not equivalent to P on the set of all events, which is why we have to
qualify the statement with the adjective ‘locally’.

14.. relating to measurable selection of maximising portfolios in the case of non-uniqueness ...
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Aside: axiomatic derivation of the pricing equation. For this little aside, we use the
language of measure-theoretic probability, but this is not essential. We shall show how the pricing
expression (??) can be derived very quickly from four simple axioms which a family of pricing
operators should naturally obey.

Suppose that we have pricing operators (πtT )0≤t≤T for contingent claims; if Y is some FT

measurable contingent claim to be paid at time T , the time-t ‘market’ price will be

πtT (Y ),

which may be random, but must be Ft-measurable.

We shall assume that the pricing operators (πtT )0≤t≤T satisfy certain axioms:

(A1) Each πtT is a bounded positive linear operator from L∞(FT ) to L∞(Ft);

(A2) If Y ∈ L∞(FT ) is almost surely 0, then π0T (Y ) is 0, and if Y ∈ L∞(FT ) is non-negative and
not almost surely 0, then π0T (Y ) > 0;

(A3) For 0 ≤ s ≤ t ≤ T and each X ∈ L∞(Ft) we have

πst(XπtT (Y )) = πsT (XY );

(A4) For each t ≥ 0 the operator π0t is bounded monotone-continuous - which is to say that if
Yn ∈ L∞(Ft), |Yn| ≤ 1 for all n, and Yn ↑ Y as n → ∞, then π0t(Yn) ↑ π0t(Y ) as n → ∞.

Axiom (A1) says that the price of a non-negative contingent claim will be non-negative, and the
price of a linear combination of contingent claims will be the linear combination of their prices
- which are reasonable properties for a market price. Axiom (A2) says that a contingent claim
that is almost surely worthless when paid, will be almost surely worthless at all earlier times (and
conversely) - again reasonable. The third axiom, (A3), is a ‘consistency’ statement; the market
prices at time s for XY at time T , or forX times the time-t market price for Y at time t, should be
the same, for any X which is known at time t. The final axiom is a natural ‘continuity’ condition
which is needed for technical reasons.

Let’s see where these axioms lead us. Firstly, for any T > 0 we have that the map

A 7→ π0T (IA)

defines a non-negative measure on the σ-field FT , from the linearity and positivity (A1) and the
continuity property (A4). Moreover, this measure is absolutely continuous with respect to P, in
view of (A2). Hence there is a non-negative FT -measurable random variable ζT such that

π0T (Y ) = E[ζTY ]
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for all Y ∈ L∞(FT ). Moreover, P[ζT > 0] > 0, because of (A2) again. Now we exploit the
consistency condition (A3); we have

π0t(XπtT (Y )) = E[XζtπtT (Y )] = π0T (XY ) = E[XY ζT ].

Since X ∈ L∞(Ft) is arbitrary, we deduce that

πtT (Y ) = Et[Y ζT ]/ζt,

which shows that the pricing operators πst are actually given by a risk-neutral pricing recipe, with
the state-price density process ζ .

3 The (Cox-Ross-Rubinstein) binomial model.

The model we are about to study is the most important example to understand in the whole
subject. It is technically very simple, and can be analysed using only arithmetic; it displays the
main qualitative features of the more sophisticated Brownian model which we discuss later; and
it serves as a computational workhorse for computing (approximately) the prices of derivatives
written on (log-Brownian) shares.

The story is very simple. We start with a two-period model, time 0 and time 1. There are two
assets in the model, S0 and S1, and both are worth 1 at time 0;

S0
0 = 1 = S1

0 .

At time 1, asset 0 (the riskless asset, or bond for short) is worth the sure amount 1 + r, whereas
asset 1 (the share) is worth u if the time period was good, and d < u if the time period was bad.
We shall assume that15

d < 1 + r < u

and we assume that the period was good with probability p0 ≡ 1− q0 ∈ (0, 1).

15If 1 + r were not between u and d, then one of the assets would be dominated, and no-one would hold it.
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u

1+r

d

Figure 2: Single-period binomial model.

The first question is ‘How do we price contingent claims in this model?’ So suppose a contingent
claim Y delivers amount a in a good year, and amount b in a bad year; what would be the price
of this contingent claim at time 0? Because of a special feature of this model, we can answer this
explicitly. The point is that we can build a replicating portfolio for Y , that is, a portfolio of x
bonds and y shares which exactly replicates the payoff of Y at time 1. How would this be done?
We need to choose x and y so that

x(1 + r) + yu = a,

x(1 + r) + yd = b;

Solving the simultaneous linear equations gives the replicating portfolio to be

x =
ub− ad

(u− d)(1 + r)

y =
a− b

u− d

and the time-0 cost of this replicating portfolio is

x+ y =
(u− (1 + r))b+ (1 + r − d)a

(u− d)(1 + r)
=

1

1 + r
(pa+ qb), (3.1)

where

p = 1− q =
1 + r − d

u− d
. (3.2)

The cost of this replicating portfolio is the only possible time-0 price for the contingent claim Y ,
because if it were to trade for any other price there would be riskless profit to be made. The
market is said to be complete because any contingent claim can be perfectly replicated by taking
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positions in the traded assets16. It is important to notice the interpretation of (3.1);

x+ y = EQ[Y/(1 + r)] (3.3)

where under the probability Q the probability of a good year is p; Q is the equivalent martingale
measure whose existence was guaranteed by Theorem 2.8.

Remarks. Previously in Section 1.1 we arrived at the notions of bid and ask prices, and of
marginal prices, by considering how an individual agent would optimally choose his portfolio,
yet here we have arrived at a unique price for a contingent claim Y by a completely different
replication argument. Let us see how the utility-maximisation approach leads to exactly the same
conclusions.

An agent who begins with initial wealth w0 can create any wealth at time 1 which has the
representation

w1 = w0S
0
1 + t(S1

1 − S0
1) = w0(1 + r) + t{S1

1 − (1 + r)}
for some t ∈ R, so the set of all achievable wealths is an affine set. The optimisation problem
(1.7) is therefore to

max
t

[

p0U(w0(1 + r) + t(u− 1− r)) + q0U(w0(1 + r) + t(d− 1− r))

]

;

differentiating and setting to zero determines the optimal t∗ via the equation17

p0(u− 1− r)U ′(wg) = q0(1 + r − d)U ′(wb)

where we abbreviate the wealths resulting at the ends of good and bad periods:

wg = w0(1 + r) + t∗(u− 1− r),

wb = w0(1 + r) + t∗(d− 1− r).

The expression (1.12) for the price of the contingent claim Y which delivers a in a good period
and b in a bad period therefore gives us

E[U ′(w1)Y ]

(1 + r)E[U ′(w1) ]
=

p0U
′(wg)a + q0U

′(wb)b

{p0U ′(wg) + q0U ′(wb)}(1 + r)

=
(1 + r − d)a+ (u− 1− r)b

(u− d)(1 + r)
,

exactly as at (3.1). Notice the extra factor (1+ r) in the denominator - this is because if the agent
pays out π at time 0 to buy Y , then his time-1 wealth is reduced by π(1 + r).

16We do not expect completeness to hold in any practical situation, but it is a simple enough model to allow us
to get started.

17There will be a unique optimal t∗ provided that U is strictly concave, C1, and satisfies supU ′(x) = ∞,
inf U ′(x) = 0.
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The bid and ask prices for Y for any agent will agree with the price found by the above argument,
essentially because Y can be replicated.

So we have seen two arguments to arrive at the price of a general contingent claim Y , the first
one proved in a few lines by solving two simultaneous linear equations, the other by more involved
expected-utility maximisation. The simplicity of the first is an attractive feature, but we have to
realise that the argument only works because of the completeness of this very simple market; if we
consider the slightly more complicated situation where a period can be good, bad or indifferent,
then the entire first argument collapses, and only the expected-utility maximisation approach is
open to us. It has to be admitted straight away that there are now almost no examples where
anything can be computed in closed form, and we are forced to resort to numerical methods.
In such a situation, the price of a contingent claim, the equilibrium price, will depend on the
preferences of the agents, and may in principle fail to be unique.

3.1 The multi-period binomial model.

The single-period binomial model just described extends easily to a multiperiod model. To see
how, let us just examine the special case of the two-period model, and consider how we may
replicate (and hence price) a contingent claim that will be paid at time 2.

u

d

u2

ud

d2

du

Figure 3: Two-period binomial model.

At time 2, there are 4 nodes of the tree, and to replicate a contingent claim which takes values
yuu, yud, ydu and ydd at the four nodes (using an obvious notation), we can simply apply the
preceding argument three times. Indeed, at the end of period 1, assuming that the share moved
to u, we are faced with the problem of replicating the outcome of the next period, and this is the
problem we have just solved; the random payment of yud if the share goes up in period 2, or yud
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if it goes down, can be replicated by taking a position in the share and the bond which costs

yu =
pyuu + qyud

1 + r
,

and similarly if the first period resulted in a downward movement of the share, we can replicate
the coming period by a position which costs

yu =
pydu + qydd

1 + r
;

see Figure 4

yu

yd

Figure 4: Two-period binomial model reduced to a single period.

Thus at time zero, we can replicate the time-2 claim by taking a position which costs

pyu + qyd
1 + r

.

It is clear now how a multi-period version of the binomial model will be handled.

Worked examples. Let us now work out the prices of a few derivatives in the context of the
two-period binomial model. We will take u = 6/5, d = 9/10, and r = 1/10, so that the risk-neutral
‘up’-probability p is computed from (3.2) to be

p =
1 + 1

10
− 9

10
6
5
− 9

10

=
2

3
.

European call option. We price a European call option with strike K ∈ (81/100, 27/25).
The holder of this option has the right but not the obligation to buy one share for the strike price
K at expiry, time 2. The option will be exercised if and only if the prevailing price of the share
exceeds the strike; in all other cases, the option is worthless. The payoffs at the four terminal
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nodes are therefore

yuu = u2 −K =
36

25
−K,

yud = ud−K =
27

25
−K,

ydu = ud−K =
27

25
−K,

ydd = 0.

The time-0 price of this is therefore

C =
p2yuu + pqyud + qpydu + q2ydd

(1 + r)2
=

100

121
(
28

25
− 8

9
K). (3.4)

When the strike is 1, the call is see to be worth

208

1089
= 0.191001.

European put option. We price a European put option with strike K ∈ (81/100, 27/25). The
holder of this option has the right but not the obligation to sell one share for the strike price K
at expiry, time 2. We may of course just repeat the calculation of the European call price mutatis
mutandis; this calculation is particularly easy, as only one of the terminal nodes has positive value,
and the time-0 price is easily seen to be

P = q2(K − 81

100
)/(1 + r)2 =

1

9
.
100

121
(K − 81

100
) (3.5)

However, it is more elegant to deduce the price of the put by put-call parity. This is based on the
simple observation that if you are long one call and short one put (that is, you hold 1 call and
hold -1 puts), then at time 2 the aggregate value of your position will just be one share minus the
strike; the call will be worth (S2 −K)+ and the put will be worth (K − S2)

+, and the difference
is just S2 −K. But this contingent claim could be financed by buying one share at time 0, and
borrowing K/(1+r)2 at time 0; thus the difference between the call and put prices at time 0 must
be the cost of this alternative replicating portfolio:

C − P = S0 −
K

(1 + r)2
= 1− 100

121
K,

which is easily confirmed by looking at (3.4) and (3.5).

Lookback option. The lookback option pays at expiry the largest value achieved by the
underlying up to that time. This contingent claim therefore has values

yuu = u2 =
36

25
,

yud = u =
6

5
,

ydu = ud =
27

25
,

ydd = 1
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at time 1, so its time-0 price is obtained as

p2yuu + pqyud + qpydu + q2ydd
(1 + r)2

=
100

121

283

225
=

1132

1089
= 1.039486

which is only a little bigger than the value of the share.

Down-and-out call option. A down-and-out call is a European call option which is ‘knocked
out’ (that is, becomes worthless) if at any time the price of the underlying asset falls below the
barrier. For concreteness, let us suppose that we take the strike price to be K = 1, with barrier
at 0.95. This time, the values at expiry are

yuu = u2 − 1 =
11

25
,

yud = ud− 1 =
2

27
,

ydu = 0,

ydd = 0,

so we compute the price as

100

121
(
4

9

11

25
+

2

9

2

27
) =

5152

29403
= 0.1752202.

As expected, this is less than the price of the standard European call with the same strike, and
is in fact about 8.26% less. There are of course a range of different types of barrier option; for
example, a down-and-in call is a European call which only becomes worth a positive amount if
the minimum price is below the barrier, and there is an obvious parity relation:

Down-and-out call + Down-and-in call = call

The binomial model is often used as an approximation to a continuous-time continuous-state
model, and prices for that model are often approximated by the corresponding prices for the
binomial model. It is worth remarking that this approximation can be very poor for barrier
options.

******************************************************

Something about trinomial models??

*****************************************************

4 Dynamic programming.

As we have already seen, solving optimisation problems is an important element of pricing, and of
deriving the behaviour of agents in a market. When that market is evolving in time, we naturally
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find ourselves looking at various dynamic optimisation problems, and one of the best methods for
attacking such problems is dynamic programming. The method is very simple conceptually, and
also easy to implement; let’s immediately look at an example which displays the key idea.

The trees in an orchard are arranged in a regular rectangular grid pattern, as shown in the array
below; there are 10 columns each containing 11 trees, and the numbers of apples on each tree are
given in the array below:

2 5 6 1 9 4 3 3 2 9
5 3 8 2 1 4 7 7 1 1
4 9 2 1 4 5 5 7 4 3
1 5 3 3 3 2 4 5 3 7
8 3 4 5 1 2 1 4 1 1
0 2 5 7 8 1 3 1 9 2
3 1 5 6 2 9 4 1 1 1
7 2 3 2 4 5 1 6 5 9
4 3 5 6 1 1 1 2 2 3
8 8 4 5 2 5 7 7 4 2
3 4 2 4 1 9 9 7 1 1

You start at the tree in the leftmost column of the array, at the tree with no apples. You may now
move through the orchard from one column to the next, but you may choose at each stage whether
to go straight to the tree in front of you, or the one to the right, or the one to the left. Thus at
your first step, you can choose to go to a tree with 1 apple, 2 apples or 3 apples; if you choose
the tree with 3 apples, then next step you get to choose a tree with 3, 4 or 5 apples. Supposing
that you keep all the apples from every tree that you visit in this way, how many apples would
you collect if you used the best route? If you were allowed to select the tree that you started at,
which one would it be? In the next paragraph I shall explain how to solve these problems, but if
you read on now before you have solved it for yourself, you should consider this a personal defeat!

The method is very easy to describe; at each tree, we compute the value at that tree, that is,
the maximum number of apples that could be collected starting from that tree. But how? By
working back from the end! So if we started at one of the trees in the tenth column, the value is
just the number of apples on that tree. If we now go back to the previous column, we can work
out the value at each tree; for example, at the tree with 9 apples, the value is the largest of 9+1,
9+2, 9+1, corresponding to the three possible moves which could be made from that tree. So at
that tree, the value is 11.

Proceeding in this way, we can compute the value at every tree, and the answers are displayed
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in this array:
55 53 46 39 38 29 21 14 11 9
63 51 48 40 31 29 25 18 10 1
62 58 42 35 34 30 23 18 11 3
59 57 49 37 33 25 22 16 10 7
65 56 52 46 26 24 17 15 8 1
56 55 53 48 41 25 18 12 11 2
58 54 53 47 35 33 24 15 10 1
62 55 50 39 37 29 21 20 14 9
61 53 49 44 33 26 21 16 11 3
65 57 48 43 38 32 25 18 7 2
60 52 45 42 37 36 27 14 3 1

Now we can easily read off the answers to our questions; we would collect 56 apples in total if
we used the best route through the orchard, and if we were allowed to choose where to start, we
would start at either of the trees in the first column which had 8 apples on them. As we computed
the values, we would also determine the best route through the orchard: starting from the tree
with no apples, we would have +− 00− 0− 00 as the optimal route, where + means we move up,
− means that we move down, and 0 means that we go straight across.

It would of course be very easy to solve similarly a stochastic version of the above orchard
problem, where with probability p you actually move to your chosen tree, otherwise you move to
one of the other possible trees, choosing uniformly from the (one or two) possibilities.

Problem formulation. In general, we consider a discrete-time finite-horizon Markov decision
process X taking values in a statespace X . There is a set A of allowable actions; if the process
is in state x ∈ X and we use action a ∈ A, then we receive an immediate reward r(x, a). The
process then jumps to another state, according to the distribution P (x, a; ·). The objective is to
choose actions in such a way as to obtain

supE[
N−1
∑

n=0

βnr(Xn, an) + βNR(XN) ], (4.1)

where β ∈ (0, 1] is the discount factor, and R is the terminal reward function. The action an
chosen at time n must of course be a function only of what has been observed by time n, and not
of observations yet to come. The discount factor β reflects the common realisation that money
now is better than money tomorrow, and also turns out to be mathematically convenient in the
so-called infinite horizon case where N = ∞.

Problem solution. If we define the value function by

Vn(x) ≡ supE[

N−1
∑

i=n

βi−nr(Xi, ai) + βN−nR(XN) ], (n < N);

VN(x) = R(x),
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then the value function at successive times is related by

Vn(x) = sup
a∈A

{

r(x, a) + β

∫

Vn+1(y)P (x, a; dy)

}

(4.2)

This is the famous Bellman equation of dynamic programming, and is the most widely-used
approach to solving a given dynamic programming problem. It has to be said that although text-
books present diverse examples which can be solved in closed form, in virtually every example
encountered outside a text-book some numerical solution will be required!

The Bellman equation says informally that the best you can do starting at time n is to to what
is best if you were to take a single step and then behave optimally from time n+1. This is really
not surprising, so we shall not try to present a proof here; you can find everything done carefully
in ??????. If you take a look at that proof, the only issues are in how to set up the mathematical
notation so as to establish the result. More interesting for us is how this equation can be applied
to solving problems from finance.

An optimal investment/consumption problem. An agent has wealth wn at the start of day
n. He first chooses an amount cn to consume, then divides his remaining wealth between a riskless
asset (which earns simple interest at rate r per day), and a risky asset, with a random return
Xn > 0. The Xi are independent with common distribution. Thus his wealth evolves according
to

wn+1 = (wn − cn)
{

(1 + r)(1− θn) + θnXn

}

, (4.3)

where θn is the proportion of his wealth which gets invested in the risky asset. His objective is to
obtain

supE

[N−1
∑

n=0

βnU(cn) + AβNU(wN )

]

(4.4)

The Bellman equations for this problem will take the form

VN(w) = Au(w)

Vn(w) = sup
c,θ

{

U(c) + βE(Vn+1((w − c)[(1 + r)(1− θ) + θX ]))

}

. (4.5)

In general, it will be impossible to find any closed-form solution to the Bellman equations, but if
we suppose that

U(x) = x1−R/(1−R)

for some positive R 6= 1, then we can make some progress, in view of the scaling properties of U .
Indeed, we can prove inductively that

Vn(w) = aNU(w)
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for all n. This is clearly true for n = N , with aN = A. The inductive step requires us to solve the
optimisation problem

Vn(w) = sup
c,θ

{

U(c) + βan+1E[U((w − c)[(1 + r)(1− θ) + θX ])]

}

= sup
c,θ

{

U(c) + βan+1(w − c)1−RE[U((1 + r)(1− θ) + θX)]

}

= sup
c

{

U(c) + βan+1Γ
(w − c)1−R

1− R

}

= sup
c

{

U(c) + βan+1ΓU(w − c)

}

where
Γ ≡ (1−R) sup

θ
EU((1 + r)(1− θ) + θX),

some positive constant. The optimal choice of θ therefore remains the same for all time. Thus we
find that

Vn(w) = w1−R sup
x

{

U(x) + βan+1ΓU(1− x)

}

,

≡ anU(w)

where x = c/w is optimally chosen to be

x =
1

1 + (βan+1Γ)1/R
.

A few calculations lead to the form of an:

an = (1 + (βan+1Γ)
1/R)R.

More simply, this tells us that
a1/Rn = 1 + (βΓ)1/Ra

1/R
n+1,

which is a simple linear recursion for a
1/R
n . If βΓ < 1, then there is a finite limiting value, and

otherwise the an tend monotonically to infinity.

Pricing an American option. We have seen in the context of the binomial model for an asset
how we may price a European option (that is, one whose value depends only on the price of
the underlying at expiry), and we have also shown how to compute the prices of certain path-
dependent options, such as barrier options and lookbacks. But there are other very common types
of option, known as American options, whose defining feature is that they may be exercised at
any time prior to expiry. So the holder of an American put option with strike K and expiry T on
an asset S may exercise at any time τ ≤ T , and will at that time receive (K − Sτ )

+. We insist
(of course) that the time τ is chosen without knowledge of how the asset performs in the future,
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that is, τ is a stopping time. Computing the price of such an option requires us to understand the
nature of the optimal exercise policy of the holder, which can be cast as a dynamic programme.

In more detail, we take the set X of states to be

X = {(n, j) : 0 ≤ n ≤ T, 0 ≤ j ≤ n} ∪ {∆},
where the state (n, j) corresponds to time-period n, when there have been j good periods, and
exercise has yet to happen. Thus (2, 1) ∈ X corresponds to the middle vertices {ud, du} in Figure
3. The state ∆ is the state we pass to once the option is exercised. Notice that all we need to
keep track of is the current value of the asset, not the path by which we arrived at that value, so
we can think of a recombining lattice instead of a non-recombining tree:

(5,0)

(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

Figure 5: Recombining binomial lattice

if we had for example been trying to price an up-and-out American put, this statespace would not
have been sufficient. The action space A consists of just two actions, s (stop) and c (continue).
To cast the problem in the form (4.1), we specify

β =
1

1 + r
r((n, j), c) = 0

r((n, j), s) = (K − S0u
jdn−j)+

r(∆, s) = 0 = r(∆, c)

R(T, j) = (K − S0u
jdT−j)+

P ((n, j), c; (n+ 1, j + 1) = p

P ((n, j), c; (n+ 1, j) = 1− p ≡ q

P ((n, j), s; ∆) = 1

Doing this, the Bellman equations (4.2) take the form

V (n, j) = max
{

(K − S0u
jdn−j)+, β[pV (n + 1, j + 1) + qV (n+ 1, j)]

}

36



for n < T , with the boundary condition V (T, j) = R(T, j). We can now in principle solve this
system of equations numerically backwards from the final time, and this is indeed possible and
often done. When we come to study the log-Brownian model for a share, we shall see that the
American put option is the first example of an option whose price does not have a closed-form
expression; the price has to be computed numerically, and the dynamic-programming method just
described is one way of computing it. Not surprisingly, much better problem-specific numerical
methods are known, and many approximations, and expansions are also known; nevertheless, the
simple binomial method just described deals reasonably well with this celebrated example, and is
robust enough to cope with a wide range of different examples too.

—————————————————————–

FOR LATER: Value improvement? Policy improvement?

5 Brownian motion.

Motivation. The binomial model for a share is a discrete-time model, and as such it is a poor
approximation to the reality of a market, where trading happens in a continuous fashion. We might
try to make the binomial model describe such a market better by thinking of the time period as
being very short, such as one second, or even one microsecond; if we did this, there would be a
very large number of moves of the share in an hour. The log share price in the binomial model is a
random walk (its steps are independent identically-distributed random variables), and in view of
the Central Limit Theorem, it would not be surprising if there existed some (distributional) limit
of the binomial random walk as the time periods became ever shorter. It would also be expected
that the Gaussian distribution should feature largely in that limit process, and indeed it does.
This Chapter introduces the basic ideas about a continuous-time process called Brownian motion
(in American, Wiener process), in terms of which the most common continuous-time model of a
share is defined. Using this model, various derivative prices can be computed in closed form; the
celebrated Black-Scholes formula for the price of a European call option is the prime example.
More generally, prices of more complicated options on the share can be computed by solving a
partial differential equation (PDE).

It might be thought that we can now operate entirely with our sophisticated Brownian motion
model, and forget about the much simpler binomial model, but this is far from being the case.
Usually, the pricing PDE which arises for a given derivative must be solved numerically, and this
requires us to discretise the PDE in some way. To do this, we can either discretise the derivatives
in the PDE using some finite-difference approximation and then solve the resulting system of linear
equations, or we can approximate the Brownian motion process by some random walk, and then
solve the pricing problem for that process by the usual dynamic-programming methodology. The
first computes an approximation to the solution to the problem we wanted to solve; the second
computes the exact solution to an approximating problem. These slightly different points of view
are both valuable; for basic pricing problems, the PDE technology is faster and more accurate,
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but if the problem is more complicated, the second approach is more robust.

End of Motivation.

————————————————————————-

Defn; existence statement; covariance structure; scaling; time-inversion; sup infinite a.s., and
consequences;

Stopping times; reflection principle; law of sup and last value

change of measure; joint law of sup and final value for drifting BM

38


