Part II Differential Geometry: Example Sheet 4 of 4

1. Consider the standard (Euclidean) inner product on the space $M(n)$ of real $n \times n$ matrices, namely $\langle L, K\rangle=\operatorname{Tr}\left(L K^{t}\right)$ where K^{t} denotes the transpose matrix to K, and the induced metric on the tangent spaces to $X=\mathrm{O}(n) \subset M(n)$.
For $A \in T_{I} X$, consider the curve $\alpha: \mathbb{R} \rightarrow M(n)$ given by $\alpha(t)=\exp (t A)$, as defined in lectures. Prove that α is a curve on X and that it is geodesic, that is $\alpha^{\prime \prime}(t)=A^{2} \alpha(t)$ is orthogonal to $T_{\alpha(t)} X$ for all $t \in \mathbb{R}$.
2. Using geodesic polar coordinates, show that given $p \in S$ we can express the Gaussian curvature as

$$
K(p)=\lim _{r \rightarrow 0} \frac{3(2 \pi r-L)}{\pi r^{3}}
$$

where L is the length of the geodesic circle of radius r. [Hint: Taylor expansion.]
3. Prove that on a surface of constant Gaussian curvature, the geodesic circles have constant geodesic curvature. Suppose that on a surface S, we have a point P with the property that locally around P the Gaussian curvature is constant along each geodesic circle; show that the geodesic curvature is also constant along these geodesic circles. Find the geodesic curvature of a parallel of latitude on the 2 -sphere.
4. Let S be a connected surface and $f, g: S \rightarrow S$ two isometries. Assume that there exists $p \in S$, such that $f(p)=g(p)$ and $D f_{p}=D g_{p}$. Show that $f(q)=g(q)$ for all $q \in S$.
5. (Geodesics are local minimizers of length.) Let p be a point on a surface S. Show that there exists an open set V containing p such that if $\gamma:[0,1] \rightarrow V$ is a geodesic with $\gamma(0)=p$ and $\gamma(1)=q$ and $\alpha:[0,1] \rightarrow S$ is a regular curve joining p to q, then

$$
\ell(\gamma) \leq \ell(\alpha)
$$

with equality if and only if α is a monotonic reparametrization of γ.
6. Let P be a point on an embedded surface $S \subset \mathbb{R}^{3}$; consider the orthogonal parametrization $\phi:(-\epsilon, \epsilon)^{2} \rightarrow$ $V \subset S$ of a neighbourhood of P as constructed in lectures, where the curve $\phi(0, v)$ is a geodesic of unit speed, and for any $v_{0} \in(-\epsilon, \epsilon)$ the curve $\phi\left(u, v_{0}\right)$ is a geodesic of unit speed. We showed that the first fundamental form was then $d u^{2}+G(u, v) d v^{2}$ for some smooth function G. Prove that $G(u, v)=1$ for all u, v if and only if the curves $\phi\left(u_{0}, v\right)$ are geodesics for all $u_{0} \in(-\epsilon, \epsilon)$.
7. Let S be a compact connected orientable surface in \mathbb{R}^{3} which is not homeomorphic to a sphere. Prove that there are points on S where the Gaussian curvature is positive, negative, and zero.
8. Let S be a compact oriented surface with positive Gaussian curvature and let $N: S \rightarrow S^{2}$ be the Gauss map. Let γ be a simple closed geodesic in S, and let A and B be the regions which have γ as a common boundary. Show that $N(A)$ and $N(B)$ have the same area.
9. (i) Let S be an orientable surface with Gaussian curvature $K \leq 0$. Show that two geodesics γ_{1} and γ_{2} which start from a point $p \in S$ will not meet again at a point q in such a way that the traces (i.e. images) of γ_{1} and γ_{2} form the boundary of a domain homeomorphic to a disk.
(ii) Let S be a surface homeomorphic to a cylinder and with negative Gaussian curvature. Show that S has at most one simple closed geodesic. Does the result remain true if "negative" is replaced with "non-positive"?
10. Let $\phi: U \rightarrow S$ be an orthogonal parametrization around a point p. Let $\alpha:[0, \ell] \rightarrow \phi(U)$ be a smooth simple closed curve parametrized by arc-length enclosing a domain R. Fix a unit vector $w_{0} \in T_{\alpha(0)} S$ and consider $W(t)$ the parallel transport of w_{0} along α. Let $\psi(t)$ be a differentiable determination of the angle from ϕ_{u} to $W(t)$. Show that

$$
\psi(\ell)-\psi(0)=\int_{R} K d A
$$

Let S be a connected surface. Use the above to show that if the parallel transport between any two points does not depend on the curve joining the points, then the Gaussian curvature of S is zero.
11. If $a>0$, calculate the curvature and torsion of the smooth curve given by

$$
\alpha(s)=(a \cos (s / c), a \sin (s / c), b s / c) \quad \text { where } c=\sqrt{a^{2}+b^{2}} .
$$

Suppose now that $\alpha:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ is a smooth simple closed curve parametrized by arc-length with curvature everywhere positive. If both k and τ are constant, show that $k=1$ and $\tau=0$. If k is constant and τ is not identically zero, show that $k>1$. If α is knotted and τ is constant, show that $k(s)>2$ for some $s \in[0,2 \pi]$.

These questions are not part of the examples sheet. They're different from typical 'starred' questions in other courses: they guide you through discovering further topics, and complete a circle of ideas in the course. Their content is certainly not examinable.
12. (The Poincaré-Hopf theorem.) Let S be an oriented surface and $V: S \rightarrow \mathbb{R}^{3}$ a smooth vector field, that is, $V(p) \in T_{p} S$ for all $p \in S$. We say that p is singular if $V(p)=0$. A singular point p is isolated if there exists a neighbourhood of p in which V has no other zeros. The singular point p is non-degenerate if $D V_{p}: T_{p} S \rightarrow T_{p} S$ is a linear isomorphism (can you see why $d V_{p}$ takes values in $T_{p} S$?). Show that if a singular point is non-degenerate, then it is isolated.
To each isolated singular point p we associate an integer called the index of the vector field at p as follows. Let $\phi: U \rightarrow S$ be an orthogonal parametrization around p compatible with the orientation. Let $\alpha:[0, l] \rightarrow \phi(U)$ be a regular piecewise smooth simple closed curve so that p is the only zero of V in the domain enclosed by α. Let $\varphi(t)$ be some differentiable determination of the angle from ϕ_{u} to $V(t):=V \circ \alpha(t)$. Since α is closed, there is an integer I (the index) defined by

$$
2 \pi I:=\varphi(l)-\varphi(0) .
$$

(i) Show that I is independent of the choice of parametrization (Hint: use an ealier problem). One can also show that I is independent of the choice of curve α, but this is a little harder. Also one can prove that if p is non-degenerate, then $I=1$ if $D V_{p}$ preserves orientation and $I=-1$ if $d V_{p}$ reverses orientation.
(ii) Draw some pictures of vector fields in \mathbb{R}^{2} with an isolated singularity at the origin. Compute their indices.
(iii) Suppose now that S is compact and that V is a smooth vector field with isolated singularities. Consider a triangulation of S such that

- every triangle is contained in the image of some orthogonal parametrization;
- every triangle contains at most one singular point;
- the boundaries of the triangles contain no singular points and are positively oriented.

Show that

$$
\sum_{i} I_{i}=\frac{1}{2 \pi} \int_{S} K d A=\chi(S) .
$$

Thus, you have proved that the sum of the indices of a smooth vector field with isolated singularities on a compact surface is equal to the Euler characteristic (Poincaré-Hopf theorem). Conclude that a surface homeomorphic to S^{2} cannot be combed.
Finally, suppose $f: S \rightarrow \mathbb{R}$ is a Morse function and consider the vector field given by the gradient of f, i.e., $\nabla f(p)$ is uniquely determined by $\langle\nabla f(p), v\rangle=D f_{p}(v)$ for all $v \in T_{p} S$. Use the Poincaré-Hopf theorem to show that $\chi(S)$ is the number of local maxima and minima minus the number of saddle points. Use this to find the Euler characteristic of a surface of genus two.
You can read more about this in Chap. VI of Milnor's 'Topology from the differential viewpoint'.
13. (The degree of the Gauss map.) Let S be a compact oriented surface and let $N: S \rightarrow S^{2}$ be the Gauss map. Consider $y \in S^{2}$ a regular value. Rather than counting their preimages modulo 2 as we did in the first lectures, we will count them with sign. Let $N^{-1}(y)=\left\{p_{1}, \ldots, p_{n}\right\}$. Let $\varepsilon\left(p_{i}\right)$ be +1 if $D N_{p_{i}}$ preserves orientation $\left(K\left(p_{i}\right)>0\right)$, and -1 if $D N_{p_{i}}$ reverses orientation $\left(K\left(p_{i}\right)<0\right)$. Now let

$$
\operatorname{deg}(N):=\sum_{i} \varepsilon\left(p_{i}\right)
$$

As in the case of the degree mod 2 , it can be shown that the sum on the right hand side is independent of the regular value and $\operatorname{deg}(N)$ turns out to be an invariant of the homotopy class of N.
Now, choose $y \in S^{2}$ such that y and $-y$ are regular values of N. Why can we do so? Let V be the vector field on S given by

$$
V(p):=\langle y, N(p)\rangle N(p)-y
$$

(i) Show that the index of V at a zero p_{i} is +1 if $D N_{p_{i}}$ preserves orientation and -1 if $D N_{p_{i}}$ reverses orientation.
(ii) Show that the sum of the indices of V equals twice the degree of N.
(iii) Show that $\operatorname{deg}(N)=\chi(S) / 2$.

