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1. (i) Let α : I → R3 be a curve parametrized by arc length with curvature k(s) ̸= 0 for all s ∈ I. Show
that the torsion τ of α is given by

τ(s) = −⟨α̇ ∧ α̈, α(3)⟩
|k(s)|2

.

where α(3) denotes the triple derivative with respect to s.

(ii) Give an example of two curves α : [0, 1] → R3, α̃ : [0, 1] → R3, parametrised by arc-length, such that
k(s) = k̃(s), and τ(s) = τ̃(s) whenever k(s) ̸= 0, but such that α and α̃ are not related via Euclidean
motion.

2. Let α : I → R3 be a curve parametrized by arc length with τ(s) ̸= 0 and k̇(s) ̸= 0 for all s ∈ I. Show
that a necessary and sufficient condition for α(I) to lie on a sphere is that

R2 + (Ṙ)2T 2

is constant, where R = 1/k and T = 1/τ . [To prove that the condition is necessary you need to
differentiate three times |α(s)|2. To prove sufficiency, differentiate α+Rn− ṘT b.]

3. Consider a closed plane curve inside a disk of radius r. Prove that there exists a point on the curve at
which the curvature has absolute value ≥ 1/r.

4. Let AB be a segment of straight line in the plane with endpoints A and B and let ℓ be a fixed number
strictly bigger than the length of AB. We consider curves joining A and B with length ℓ which lie on
one side of the line through A and B; show that the curve which together with AB bounds the largest
possible area is an arc of a circle passing through A and B. [You may suppose that the isoperimetric
inequality holds for piecewise smooth boundaries.]

5. Let α : [0, ℓ] → R3 be a curve parametrized by arc length with non-zero curvature everywhere. Suppose
α has no self intersections, α(0) = α(ℓ) and it induces a smooth map from S1 to R3 (i.e. α is a smooth
simple closed curve). Let r be a positive number and consider the map ϕ : [0, ℓ]× [0, 2π] → R3 given by:

ϕ(s, v) = α(s) + r(n(s) cos v + b(s) sin v)

where n = n(s) and b = b(s) are the normal and binormal vectors of α. The image T of ϕ is called the
tube of radius r around α. It can be shown that for r sufficiently small T is an embedded surface. Prove
that the area of T is 2πrℓ.

6. (i) Let S be a surface that can be covered by connected coordinate neighbourhoods V1 and V2. Assume
that V1∩V2 has two connected componentsW1 andW2, and that the Jacobian of the change of coordinates
is positive on W1 and negative on W2. Prove that S is not orientable.

(ii) Let ϕ : [0, 2π]× (−1, 1) → R3 given by:

ϕ(u, v) = ((2− v sin(u/2)) sinu, (2− v sin(u/2)) cosu, v cos(u/2)) .

The image of ϕ is the Möbius strip. By considering the parametrizations given by ϕ restricted to
(0, 2π)× (−1, 1) and

ψ(ū, v̄) = ((2− v̄ sin(π/4 + ū/2)) cos ū,−(2− v̄ sin(π/4 + ū/2)) sin ū, v̄ cos(π/4 + ū/2)) ,

(ū, v̄) ∈ (0, 2π)× (−1, 1), show that the Möbius strip is not orientable.

7. Show that the mean curvature H at p ∈ S is given by

H =
1

π

∫ π

0

kn(θ) dθ,

where kn(θ) is the normal curvature at p along a direction making an angle θ with a fixed direction.
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8. Consider a surface of revolution parametrized by ϕ : (0, 2π)× (a, b) → R3, where

ϕ(u, v) = (f(v) cosu, f(v) sinu, g(v)).

Suppose f never vanishes and that the rotating curve is parametrized by arc-length, that is, (f ′)2+(g′)2 =
1. Compute the Gaussian curvature and the mean curvature.

9. Let S be a compact orientable surface in R3. Show that the Gauss map is surjective and that it hits almost
every unit vector the same number of times modulo 2. [You may use the Jordan–Brouwer separation
theorem.] Show that S always has an elliptic point.

10. Show that if S is a connected surface in R3 such that every point is umbilic, then S is contained in a
plane or a sphere. [Hint: Use that in a parametrization ϕ(u, v), Nuv = Nvu.]

These questions are not part of the examples sheet. They’re different from typical ‘starred’ questions
in other courses: they guide you through discovering further topics related to the course. They’re not
necessarily harder than the previous questions, but they’re long, and you should feel completely free to
prioritise other things.

11. Let p a point of a surface S such that the Gaussian curvature K(p) ̸= 0 and let V be a small connected
neighbourhood of p where K does not change sign. Define the spherical area AN (B) of a domain B
contained in V as the area of N(B) if K(p) > 0 or as minus the area of N(B) if K(p) < 0 (N is the
Gauss map). Show that

K(p) = lim
A→0

AN (B)

A(B)

where A(B) is the area of B and the limit is taken through a sequence of domains Bn that converge to
p in the sense that any sphere around p contains all Bn for all n sufficiently large.

(This was the way Gauss introduced K.)

12. Let S be a surface with orientation N . Let V ⊂ S be an open set and let f : V → R be a nowhere
vanishing smooth function. Let v1 and v2 be two smooth tangent vector fields in V such that at each
point of V , v1 and v2 are orthonormal and v1 ∧ v2 = N .

(i) Prove that the Gaussian curvature K of V is given by

K =
⟨D(fN)(v1) ∧D(fN)(v2), fN⟩

f3
.

(ii) Let f be the restriction of √
x2

a4
+
y2

b4
+
z2

c4

to the ellipsoid E
x2

a2
+
y2

b2
+
z2

c2
= 1.

Show that the Gaussian curvature of E is

K =
1

a2b2c2f4
.
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