DIFFERENTIAL GEOMETRY EXAMPLES 3

P.M.H. Wilson, Michaelmas 2012
Comments/corrections are welcome, and may be e-mailed to me at pmhw@dpmms . cam. ac . uk.

1. Let o : I — S be a geodesic. Show that if « is a plane curve and a(t) # 0 for some t € I, then
G(t) is an eigenvector of the differential of the Gauss map at «(¢). [Hint: without loss of generality
suppose that « is parametrized by arc-length and observe that the normal to a and the normal to
the surface have to be colinear around ¢.]

2. Show that if all geodesics of a connected surface are plane curves, then the surface is contained
in a plane or a sphere [Hint: use the previous problem and Problem 15 of Example sheet 2].

3. Let f:51 — S5 be an isometry between two surfaces.

(i) Let a : I — Sy be a curve and V' a vector field along . Let v := foa, and W (t) := df (1) (V (1))
the corresponding vector field along . Show that DW/dt = df ) (DV/dt), and hence that V parallel
along « implies that W is parallel along ~.

(ii) Deduce that f maps geodesics to geodesics.

4. Show that the equations for geodesics on a smooth surface may be written locally in terms of
coordinates (u(t),v(t)) as

d 1
S (Bt Fo) = 5(Euu2 + 2F, 00 + Gy 9?)

%(Fu +Gv) = %(Evu2 + 2F, 00 + G, ?).

5. Consider the surface of revolution from Problem 9, Example sheet 2.

(i) Write down the differential equations of the geodesics;

(ii) Establish Clairaut’s relation: f2u is constant along geodesics. Show that if 6 is the angle that
a geodesic makes with a parallel and r is the radius of the parallel at the intersection point, then
Clairaut’s relation says that r cosf is constant along geodesics.

(iii) Show that meridians are geodesics; when is a parallel a geodesic?

6. Show that there are no compact minimal surfaces in R3.

7. The intrinsic distance of a surface S is defined as follows. Given p and ¢ in S let d(p,q) =
inf,eq(p,q) £(a). It can be shown that d is a distance (can you see which property requires some
care?) which is compatible with the topology of S. If S is complete (and without boundary) the
Hopf-Rinow theorem asserts that given two points p and ¢ there exists a geodesic ~ joining the
points such that d(p, ¢) = ¢(y) and geodesics are defined for all ¢ € R.

(i) Show that if f: S7 — S is an isometry, then da(f(p), f(¢)) = d1(p, q) for all p and ¢ in S;.

(i) A geodesic v : [0,00) — S is called a ray leaving from p if it realizes the distance between ~(0)
and «(s) for all s € [0,00). Let p be a point in a complete, noncompact surface S. Prove that S
contains a ray leaving from p. [You may assume that geodesics vary smoothly (hence continuously)
with their initial conditions.]
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8. The existence of isothermal coordinates is a hard theorem. However for the case of minimal
surfaces without planar points it is possible to give an easy proof along the following lines.

(i) Let S be a regular surface without umbilical points. Prove that S is a minimal surface if and
only if the Gauss map N : S — S? satisfies

(dNp(v1),dNp(v2)) = A(p)(v1,v2)

for all p € S and all v1, vy € T,S, where A(p) # 0 is a number which depends only on p.
(ii) By considering stereographic projection and (i) show that isothermal coordinates exist around
a non planar point in a minimal surface.

For the next five questions we consider the Weierstrass representation of a minimal surface deter-
mined by functions f and g on a simply connected domain D C C as we saw in lectures.

9. Show that if ¢ is the parametrization defined by the Weierstrass representation, then ¢ is an
immersion if and only f vanishes only at the poles of g and the order of its zero at such a point is
ezactly twice the order of the pole of g.

10. Find D, f and g representing the catenoid and the helicoid.

11. Show that the Gaussian curvature of the minimal surface determined by the Weierstrass repre-

sentation is given by
4| g 2
P -
[ f1A+1g1?)

Show that either K = 0 or its zeros are isolated. [There is a way of doing this problem almost
without calculations. Think about the relation between g and the Gauss map and the fact that
stereographic projection is conformal.]

12. The Weierstrass representation is not unique: if ¢y 4 : D — R3 is the associated parametriza-
tion and  : W — D is a bijective holomorphic map, then ¢ 4y o a is another representation of
the same minimal surface and it must have the same form with different f and g. By choosing
a(z) = g~1(2), show that, locally around regular points of g at which ¢’ is non-zero, we can assume
that our pair (f,g) is of the form (F,id), for some local holomorphic function F. We denote such a
representation by ¢p.

13. Show that the minimal surfaces given by ¢.—iop for 0 real are all locally isometric. With an
appropriate choice of F', show that the catenoid and the helicoid are locally isometric.

14. Show that any geodesic of the paraboloid of revolution z = 22 + y? which is not a meridian
intersects itself an infinite number of times [Hint: use Clairaut’s relation. You may assume that no
geodesic of a surface of revolution can be asymptotic to a parallel which is not itself a geodesic. You
will need to show that for a geodesic which is not a meridian, u(t) does not approach some wug as
t — 00.]



