
DIFFERENTIAL GEOMETRY EXAMPLES 2

P.M.H. Wilson, Michaelmas 2012

Comments/corrections are welcome, and may be e-mailed to me at pmhw@dpmms.cam.ac.uk.

1. Let α : I → R
3 be a curve parametrized by arc length with curvature k(s) 6= 0 for all s ∈ I.

Show that the torsion τ of α is given by

τ(s) = −〈α̇ ∧ α̈, ...α〉
|k(s)|2 .

2. Let α : I → R
3 be a curve parametrized by arc length with τ(s) 6= 0 and k̇(s) 6= 0 for all s ∈ I.

Show that a necessary and sufficient condition for α(I) to lie on a sphere is that

R2 + (Ṙ)2T 2

is constant, where R = 1/k and T = 1/τ . [To prove that the condition is necessary you need to

differentiate three times |α(s)|2. To prove sufficiency, differentiate α+Rn− ṘT b.]

3. Consider a closed plane curve inside a disk of radius r. Prove that there exists a point on the
curve at which the curvature has absolute value ≥ 1/r.

4. Let AB be a segment of straight line in the plane with endpoints A and B and let ℓ be a fixed
number strictly bigger than the length of AB. We consider curves joining A and B with length ℓ
which lie on one side of the line through A and B; show that the curve which together with AB
bounds the largest possible area is an arc of a circle passing through A and B. [You may suppose that
the isoperimetric inequality holds for piecewise smooth boundaries.] *Can you drop the assumption
that the curve lies on only one side of the line through A and B?

5. Let φ : U → S be a parametrization of a surface S in R
3. Show that

|φu ∧ φv| =
√

EG− F 2.

6. Let α : [0, ℓ] → R
3 be a curve parametrized by arc length with non-zero curvature everywhere.

Suppose α has no self intersections, α(0) = α(ℓ) and it induces a smooth map from S1 to R
3 (i.e. α is

a smooth simple closed curve). Let r be a positive number and consider the map φ : [0, ℓ]× [0, 2π] →
R

3 given by:
φ(s, v) = α(s) + r(n(s) cos v + b(s) sin v)

where n = n(s) and b = b(s) are the normal and binormal vectors of α. The image T of φ is called
the tube of radius r around α. It can be shown that for r sufficiently small T is a surface. Prove
that the area of T is 2πrℓ.

7. (i) Let S be a surface that can be covered by connected coordinate neighbourhoods V1 and V2.
Assume that V1∩V2 has two connected components W1 and W2, and that the Jacobian of the change
of coordinates is positive on W1 and negative on W2. Prove that S is not orientable.

(ii) Let φ : [0, 2π] × (−1, 1) → R
3 given by:

φ(u, v) = ((2 − v sin(u/2)) sinu, (2 − v sin(u/2)) cosu, v cos(u/2)) .

The image of φ is the Möbius strip. By considering the parametrizations given by φ restricted to
(0, 2π) × (−1, 1) and

ψ(ū, v̄) = ((2 − v̄ sin(π/4 + ū/2)) cos ū,−(2 − v̄ sin(π/4 + ū/2)) sin ū, v̄ cos(π/4 + ū/2)) ,

(ū, v̄) ∈ (0, 2π) × (−1, 1), show that the Möbius strip is not orientable.
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8. Show that the mean curvature H at p ∈ S is given by

H =
1

π

∫ π

0

kn(θ) dθ,

where kn(θ) is the normal curvature at p along a direction making an angle θ with a fixed direction.

9. Consider a surface of revolution parametrized by φ : (0, 2π) × (a, b) → R
3, where

φ(u, v) = (f(v) cosu, f(v) sinu, g(v)).

Suppose f never vanishes and that the rotating curve is parametrized by arc-length, that is, (f ′)2 +
(g′)2 = 1. Compute the Gaussian curvature and the mean curvature.

10. (i) Determine an equation for the tractrix, which is the curve such that the length of the segment
of the tangent line between the point of tangency and some fixed line r in the plane -which does not
meet the curve- is a constant equal to 1.

(ii) Rotate the tractrix about the line r to obtain a surface of revolution (called the pseudosphere).
Compute its Gaussian curvature.

11. Let S be a surface with orientation N . Let V ⊂ S be an open set and let f : V → R be a
nowhere vanishing smooth function. Let v1 and v2 be two smooth tangent vector fields in V such
that at each point of V , v1 and v2 are orthonormal and v1 ∧ v2 = N .

(i) Prove that the Gaussian curvature K of V is given by

K =
〈d(fN)(v1) ∧ d(fN)(v2), fN〉

f3
.

(ii) Let f be the restriction of
√

x2

a4
+
y2

b4
+
z2

c4

to the ellipsoid E
x2

a2
+
y2

b2
+
z2

c2
= 1.

Show that the Gaussian curvature of E is

K =
1

a2b2c2f4
.

12. Let S be a compact orientable surface in R
3. Show that the Gauss map is surjective and that it

hits almost every direction the same number of times modulo 2. [You may use the Jordan-Brouwer
separation theorem.] Show that S always has an elliptic point.

13. If φ is an orthogonal parametrization, i.e. F = 0, show that the Gauss formula yields:

K = − 1

2
√
EG

{(

Ev√
EG

)

v

+

(

Gu√
EG

)

u

}

.

14. Let p a point of a surface S such that the Gaussian curvature K(p) 6= 0 and let V be a small
connected neighbourhood of p where K does not change sign. Define the spherical area AN (B) of a
domain B contained in V as the area of N(B) if K(p) > 0 or as minus the area of N(B) if K(p) < 0
(N is the Gauss map). Show that

K(p) = lim
A→0

AN (B)

A(B)

where A(B) is the area of B and the limit is taken through a sequence of domains Bn that converge
to p in the sense that any sphere around p contains all Bn for all n sufficiently large.

(This was the way Gauss introduced K.)

15. Show that if S is a connected surface in R
3 such that every point is umbilic, then S is part of a

plane or a sphere. [Hint: use that in a parametrization φ(u, v), Nuv = Nvu.]


