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Comments, corrections are welcome at any time. a.g.kovalev@dpmms.cam.ac.uk.

1. Let α : I → R3 be a curve parametrized by arc length with curvature k(s) 6= 0 for all
s ∈ I. Show that the torsion τ of α is given by

τ(s) = −〈α̇× α̈,
...
α〉

|k(s)|2
.

2. (i) Let α : I → R3 be a curve parametrized by arc length with τ(s) 6= 0 and k̇(s) 6= 0 for
all s ∈ I. Show that a necessary and sufficient condition for α(I) to lie on a sphere is that

R2 + (Ṙ)2T 2

is constant, where R = 1/k and T = 1/τ . [To prove that the condition is necessary you need

to differentiate three times |α(s)|2. To prove sufficiency, differentiate α+Rn− ṘT b.]
(ii) Show that if α is a closed smooth curve lying on a sphere, then there exists a point

α(s0) such that τ(s0) = 0. [Hint: differentiate the third derivative of |α(s)|2 obtained in (i).]

3. Consider a closed plane curve inside a disk of radius r. Prove that there exists a point on
the curve at which the curvature has absolute value ≥ 1/r.

4. Let AB be a segment of straight line in the plane with endpoints A and B and let ` be a
fixed number strictly greater than the length of AB. Show that the curve joining A and B
with length ` and such that together with AB bounds the largest possible area is an arc of a
circle passing through A and B.
[You may suppose that the isoperimetric inequality holds for piecewise smooth boundaries.]

5. Let ϕ : U → S be a parametrization of a surface S in R3. Show that

|ϕu × ϕv| =
√
EG− F 2.

6. Let α : [0, `] → R3 be a curve parametrized by arc length with non-zero curvature every-
where. Suppose α has no self intersections, α(0) = α(`) and it induces a smooth map from
S1 to R3 (i.e. α is a smooth simple closed curve). Let r be a positive number and consider
the map ϕ : [0, `]× [0, 2π]→ R3 given by:

ϕ(s, v) = α(s) + r
(
n(s) cos v + b(s) sin v

)
,

where n = n(s) and b = b(s) are the normal and binormal vectors of α. The image T of ϕ
is called the tube of radius r around α. It can be shown that for r sufficiently small T is a
surface. Prove that the area of T is 2πr`.

7. (i) Let S be a surface that can be covered by connected coordinate neighbourhoods V1
and V2. Assume that V1 ∩ V2 has two connected components W1 and W2, and that the
Jacobian of the change of coordinates is positive on W1 and negative on W2. Prove that S is
not orientable.



(ii) Let ϕ : [0, 2π]× (−1, 1)→ R3 given by

ϕ(u, v) =
(
(2− v sin(u/2)) sinu, (2− v sin(u/2)) cosu, v cos(u/2)

)
.

The image of ϕ is the Möbius strip. By considering the parametrizations given by ϕ restricted
to (0, 2π)× (−1, 1) and

ψ(ū, v̄) =
(
(2− v̄ sin(π/4 + ū/2)) cos ū, −(2− v̄ sin(π/4 + ū/2)) sin ū, v̄ cos(π/4 + ū/2)

)
,

(ū, v̄) ∈ (0, 2π)× (−1, 1), show that the Möbius strip is not orientable.

8. Show that the mean curvature H at p ∈ S is given by

H =
1

π

∫ π

0
kn(θ) dθ,

where kn(θ) is the normal curvature at p along a direction making an angle θ with a fixed
direction.

9. Consider a surface of revolution parametrized by ϕ : (0, 2π)× (a, b)→ R3, where

ϕ(u, v) =
(
f(v) cosu, f(v) sinu, g(v)

)
.

Suppose f never vanishes and that the rotating curve is parametrized by arc-length, that is,
(f ′)2 + (g′)2 = 1. Compute the Gaussian curvature and the mean curvature.

10. (i) Determine an equation for the tractrix, which is the curve such that the length of
the segment of the tangent line between the point of tangency and some fixed line l in the
plane—which does not meet the curve—is a constant equal to 1.

(ii) Rotate the tractrix about the line l to obtain a surface of revolution (called the
pseudosphere). Compute its Gaussian curvature.

11. Let S be a compact orientable surface in R3. Show that the Gauss map is surjective and
that it hits almost every direction the same number of times modulo 2. [You may use the
Jordan–Brouwer separation theorem.] Show that S always has an elliptic point.

12. If ϕ is an orthogonal parametrization, i.e. F = 0, show that the Gauss formula yields:

K = − 1

2
√
EG

{(
Ev√
EG

)
v

+

(
Gu√
EG

)
u

}
.

13. Let p a point of a surface S such that the Gaussian curvature K(p) 6= 0 and let V be a
small connected neighbourhood of p where K does not change sign. Define the spherical area
AN (B) of a domain B contained in V as the area of N(B) if K(p) > 0 or as minus the area
of N(B) if K(p) < 0 (N is the Gauss map). Show that

K(p) = lim
A→0

AN (B)

A(B)
,

where A(B) is the area of B and the limit is taken through a sequence of domains Bn that
converge to p in the sense that any sphere around p contains all Bn for all n sufficiently large.

(This was the way Gauss introduced K.)

14. Show that if S is a connected surface in R3 such that every point is umbilic, then S is
part of a plane or a sphere. [Hint: use that in a parametrization ϕ(u, v), Nuv = Nvu.]


