MATHEMATICAL TRIPOS PART II (2025-2026)

Coding and Cryptography - Example Sheet 1 of 4

1) (i) Give an example of a decipherable code which is not prefix-free. (Hint: What happens
if you reverse all the codewords in a prefix-free code?)

(ii) Give an example of a non-decipherable code which satisfies the Kraft inequality.

(iii) Check directly that comma codes satisfy the Kraft inequality.

2) For a code f : ¥; — ¥4 and a code [’ : ¥} — 35" the product code is g : 31 x X} —
(3o U X5)* given by g(z,y) = f(x)f (y). Show that the product of two prefix-free codes is
prefix-free, but that the product of a decipherable code and a prefix-free code need not even
be decipherable.

3) Jensen’s inequality states that if f : R — R is a convex function and pq,...,p, is a
probability distribution (i.e. 0 < p; < 1and Y p; = 1) then f(>_pix;) <> pif(x;) for any
x1,...,2, € R. Deduce Gibbs’ inequality from Jensen’s inequality applied to the convex
function f(z) = —logx.

4) Show that H(py,p2,p3) < H(p1,1 —p1) + (1 — p1) and determine when equality occurs.

5) Use the methods of Shannon-Fano and Huffman to construct prefix-free binary codes for
messages (i1, . . ., 5 emitted (i) with equal probabilities, or (ii) with probabilities 0.3, 0.3, 0.2,
0.15,0.05. Compare the expected word lengths in each case.

6) Messages 1, . . ., i5 are emitted with probabilities 0.4,0.2,0.2,0.1,0.1. Determine whether
there are optimal binary codings with (i) all but one codeword of the same length, or (ii)
each codeword a different length.

7) A binary Huffman code is used for encoding symbols 1, ..., m occurring with probabilities
p1L>pa > - >y > 0 where Z1§j§m p;j = 1. Let s; be the length of the shortest codeword
and s, the length of the longest codeword. Determine the maximal and minimal values of
s1 and s, and find binary trees for which they are attained.

8) Show that if an optimal binary code has word lengths sy, ..., s,, then

mlogm < sp+ -+ 8, < (Mm* +m —2)/2.



9) Consider 64 messages M; with the following properties: M; has probability 1/2, M, has
probability 1/4 and M; has probability 1/248 for 3 < j < 64. Explain why, if we use (bi-
nary) codewords of equal length, then the length of the codeword must be at least 6. By
using the ideas of Huffman’s algorithm (you should not need to go through all the steps)
obtain a set of codewords such that the expected length of a codeword sent is no more than 3.

10) Suppose that a gastric infection is known to originate in exactly one of m restaurants,
the probability it originates in the j** being p;. A health inspector has samples from all of
the m restaurants and by testing the pooled samples from a set A of them can determine
with certainty whether the infection originates in A or its complement. Let N(pi,...,pm)
denote the minimum expected number of such tests needed to locate the infection. Show
that H(p1,...,pm) < N(p1,---,Pm) < H(p1,...,pm) + 1, and determine when the lower
bound is attained.

11) Extend the definition of entropy to a random variable taking values in the non-negative
integers. Compute the expected value E(X) and entropy H(X) of a random variable X
with P(X = k) = p(1 —p)*. Show that among non-negative integer valued random variables
with the same expected value, X achieves the maximum possible entropy. (You may assume
Gibbs’ inequality holds in the countable setting.)

12) In a horse race with m horses the probability that the i** horse wins is p;. The odds of-
fered on each horse are a;,for-1, i.e. a bet of 2 pounds on the i** horse will yield a;z pounds
if the horse wins, and nothing otherwise. A gambler bets a proportion b; of his wealth on
horse i, with > " | b; = 1. He secks to maximise W = > """ p;log(a;b;). Solve to find the b;
that maximise W. Show that, in the case when all odds are the same, this maximum and
the entropy H(pi,...,pm) sum to a constant.

13) A source emits messages i1, ..., i, with non-zero probabilities py,...,p,. Let S be
the codeword length random variable for a decipherable code f : ¥; — 33 where ¥, =
{p1,. .., pm} and |X3| = a. Show that the minimum possible value of E(a®) satisfies

(é \/E)2 < E(a”) < a(i \/E)

(Hint: The Cauchy-Schwarz inequality.)
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Further Problems

14)(i) In lectures we only described Huffman coding in the binary case, i.e. a = 2. In general
we add extra messages of probability zero so that the number of messages m satisfies m = 1
(mod a — 1). Then at each stage we group together the a smallest probabilities. Carry this
out for a ternary coding of a source with probabilities 0.2,0.2,0.15,0.15,0.1,0.1,0.05, 0.05.

(ii) Show that if a ternary decipherable code of size m meets the lower bound in the noiseless
coding theorem then m is odd.

15) Consider the following method for generating a code for a random variable X which
takes m values {1,2,...,m} with probabilities py, ps, ..., pm. Assume that the probabilities
are ordered so that p; > py > - -+ > p,,. Define

i—1
Fi = Zplm
k=1

i.e. for the sum of the probabilities of all symbols less than 7. Then the codeword for i is the
number F; € [0, 1] rounded off to ¢; bits, where ¢; = [log pl}

(i) Show that the code constructed by this process is prefix-free and the expected word length
L satisfies
HX)<L<HX)+1.

(ii) Construct the code for the probability distribution (0.5,0.25,0.125,0.125).
(This is called a Shannon code. It is suboptimal in the sense that it does not in general
achieve the lowest possible expected codeword length like Huffman coding does.)

16) You are given m apparently identical coins, one of which may be a forgery. Forged coins
are either too light or too heavy. You are also given a balance, on which you may place any
of the coins you like. The coins placed in either pan may be together heavier or lighter than
those in the other pan or the pans may balance.

You are allowed at most 3 uses of the balance. Show that if m > 13 then you cannot
be sure of detecting the forgery and its nature. [Optional - show that when m = 12 three
weighings suffice.]

(This problem ‘is said to have been planted during the war ...by enemy agents since
Operational Research spent so many man-hours on its solution.’!)

Comments & corrections should be sent to Rachel Camina (rdc26).

IThe quotation is lifted from Dan Pedoe’s The Gentle Art of Mathematics (Dover reprint, 1982) which
also gives an attractive solution. Niobe, the protagonist of Piers Anthony’s novel With a Tangled Skein,
must solve the twelve-coin variation of this puzzle to find her son in Hell: Satan has disguised the son to
look identical to eleven other demons, and he is heavier or lighter depending on whether he is cursed to lie
or able to speak truthfully. In the episode ‘Captain Peralta’ of Brooklyn Nine-Nine, Holt presents to his
team a version of the twelve-coin problem involving twelve men and a seesaw. The original 12 coin version
was solved in 1945 by H. Grossman.



