
MATHEMATICAL TRIPOS PART II (2020–21)

Coding and Cryptography - Example Sheet 1 of 4 R.D.Camina

1) (i) Give an example of a decipherable code which is not prefix-free. (Hint: What
happens if you reverse all the codewords in a prefix-free code?)
(ii) Give an example of a non-decipherable code which satisfies the Kraft inequality.
(iii) Check directly that comma codes satisfy the Kraft inequality.

2) For a code f : Σ1 → Σ∗2 and a code f ′ : Σ′1 → Σ′2
∗

the product code is g : Σ1 × Σ′1 →
(Σ2 ∪ Σ′2)∗ given by g(x, y) = f(x)f ′(y). Show that the product of two prefix-free
codes is prefix-free, but that the product of a decipherable code and a prefix-free code
need not even be decipherable.

3) Jensen’s inequality states that if f : R → R is a convex function and p1, . . . , pn is a
probability distribution (i.e. 0 ≤ pi ≤ 1 and

∑
pi = 1) then f(

∑
pixi) ≤

∑
pif(xi)

for any x1, . . . , xn ∈ R. Deduce Gibbs’ inequality from Jensen’s inequality applied to
the convex function f(x) = − log x.

4) Show that H(p1, p2, p3) ≤ H(p1, 1−p1)+(1−p1) and determine when equality occurs.

5) Use the methods of Shannon-Fano and Huffman to construct prefix-free binary codes
for messages µ1, . . . , µ5 emitted (i) with equal probabilities, or (ii) with probabilities
0.3, 0.3, 0.2, 0.15, 0.05. Compare the expected word lengths in each case.

6) Messages µ1, . . . , µ5 are emitted with probabilities 0.4, 0.2, 0.2, 0.1, 0.1. Determine
whether there are optimal binary codings with (i) all but one codeword of the same
length, or (ii) each codeword a different length.

7) A binary Huffman code is used for encoding symbols 1, . . . ,m occurring with proba-
bilities p1 ≥ p2 ≥ · · · ≥ pm > 0 where

∑
1≤j≤m pj = 1. Let s1 be the length of the

shortest codeword and sm the length of the longest codeword. Determine the maximal
and minimal values of s1 and sm and find binary trees for which they are attained.

8) Show that if an optimal binary code has word lengths s1, . . . , sm then

m logm ≤ s1 + · · ·+ sm ≤ (m2 +m− 2)/2.

9) Consider 64 messages Mj with the following properties: M1 has probability 1/2, M2

has probability 1/4 and Mj has probability 1/248 for 3 ≤ j ≤ 64. Explain why, if we
use (binary) codewords of equal length, then the length of the codeword must be at
least 6. By using the ideas of Huffman’s algorithm (you should not need to go through
all the steps) obtain a set of codewords such that the expected length of a codeword
sent is no more than 3.

10) Suppose that a gastric infection is known to originate in exactly one of m restaurants,
the probability it originates in the jth being pj . A health inspector has samples from
all of the m restaurants and by testing the pooled samples from a set A of them can
determine with certainty whether the infection originates in A or its complement. Let
N(p1, . . . , pm) denote the minimum expected number of such tests needed to locate
the infection. Show that H(p1, . . . , pm) ≤ N(p1, . . . , pm) < H(p1, . . . , pm) + 1, and
determine when the lower bound is attained.
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11) Extend the definition of entropy to a random variable taking values in the non-negative
integers. Compute the expected value E(X) and entropy H(X) of a random variable
X with P (X = k) = p(1−p)k. Show that among non-negative integer valued random
variables with the same expected value, X achieves the maximum possible entropy.

12) In a horse race with m horses the probability that the ith horse wins is pi. The odds
offered on each horse are ai–for–1, i.e. a bet of x pounds on the ith horse will yield aix
pounds if the horse wins, and nothing otherwise. A gambler bets a proportion bi of
his wealth on horse i, with

∑m
i=1 bi = 1. He seeks to maximise W =

∑m
i=1 pi log(aibi).

Solve to find the bi that maximise W . Show that, in the case when all odds are the
same, this maximum and the entropy H(p1, . . . , pm) sum to a constant.

13) A source emits messages µ1, . . . , µm with non-zero probabilities p1, . . . , pm. Let S be
the codeword length random variable for a decipherable code f : Σ1 → Σ∗2 where
Σ1 = {µ1, . . . , µm} and |Σ2| = a. Show that the minimum possible value of E(aS)
satisfies ( m∑

i=1

√
pi

)2

≤ E(aS) < a

( m∑
i=1

√
pi

)2

.

(Hint: The Cauchy-Schwarz inequality.)

Further Problems

14) (i) In lectures we only described Huffman coding in the binary case, i.e. a = 2. In
general we add extra messages of probability zero so that the number of messages
m satisfies m ≡ 1 (mod a − 1). Then at each stage we group together the a small-
est probabilities. Carry this out for a ternary coding of a source with probabilities
0.2, 0.2, 0.15, 0.15, 0.1, 0.1, 0.05, 0.05.
(ii) Show that if a ternary decipherable code of size m meets the lower bound in the
noiseless coding theorem then m is odd.

15) You are given m apparently identical coins, one of which may be a forgery. Forged
coins are either too light or too heavy. You are also given a balance, on which you
may place any of the coins you like. The coins placed in either pan may be together
heavier or lighter than those in the other pan or the pans may balance.

You are allowed at most 3 uses of the balance. Show that if m > 13 then you
cannot be sure of detecting the forgery and its nature. [Optional - show that when
m = 12 three weighings suffice.]
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