
MATHEMATICAL TRIPOS PART II 2013
CODING AND CRYPTOGRAPHY

EXAMPLE SHEET 3

The first 15 examples are minimal to cover the course; you are also encouraged to try questions
16–17.

1 Write down the weight enumerators of the trivial code (that is to say, Fn
2 ), the zero code

(that is to say, {0}), the repetition code and the simple parity code.

2 List the codewords of the Hamming (7,4) code and its dual. Write down the weight
enumerators and verify that they satisfy the MacWilliams identity.

3 (a) Show that if C is linear, then so are its extension C+, truncation C− and puncturing
C ′, provided the symbol chosen to puncture by is 0. Give an example to show that C ′ may
not be linear if we puncture by 1.

(b) Show that extension followed by truncation does not change a code. Is this true if
we replace ‘truncation’ by ‘puncturing’?

(c) Give an example where puncturing reduces the information rate and an example
where puncturing increases the information rate.

(d) Show that the minimum distance of the parity extension C+ is the least even integer
n with n ≥ d(C).

(e) Show that the minimum distance of the truncation C− is d(C) or d(C)− 1 and that
both cases can occur.

(f) Show that puncturing cannot decrease the minimum distance, but give examples to
show that the minimum distance can stay the same or increase.

4 Show that if 2k
∑d−2

i=0

(
n−1
i

)
< 2n then A(n, d) > 2k. Compare this with the GSV bound

in the case n = 10 and d = 3. [Hint: construct a parity check matrix for a linear code by
choosing one row at a time.]

5 The Mariner mission to Mars1 used the RM(5, 1) code. What is its information rate?
What proportion of errors could it correct in a single codeword? How does it compare to the
Hamming code of length 31 (= 25 − 1)?

6 Show that the weight enumerator of RM(d, 1) is

t2
d

+ (2d+1 − 2)s2
d−1

t2
d−1

+ s2
d

.

7 (i) Show that every codeword in RM(d, d− 1) has even weight.
(ii) Show that RM(m,m− r − 1) ⊆ RM(m, r)⊥.
(iii) By considering dimension, or otherwise, show that RM(m, r) has dual code RM(m,m−

r − 1).

1Launched by NASA from Cape Canaveral on 30 May 1971, Mariner 9 was the first spacecraft to orbit
another planet, narrowly beating Soviet Mars 2 and Mars 3, which both arrived within a month. After 349
days in orbit, Mariner 9 had transmitted 7,329 images, covering 100% of Mars’ surface. It still orbits Mars
in an orbit which will eventually decay in 2022.
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8 If there is a perfect e-error correcting binary code of length n, show that V (n, e) divides
2n. This condition is not sufficient for such a code to exist. We prove this by establishing the
following results.

(i) Verify that 290

V (90,2)
= 278.

(ii) Suppose that C is a perfect 2-error correcting binary code of length 90 and size 278.
Explain why we may suppose, without loss of generality, that the zero word 0 ∈ C.

(iii) Let C be as in (ii) with 0 ∈ C. Consider the set

X = {x ∈ F90
2 : x1 = 1, x2 = 1, d(0,x) = 3}.

Show that, corresponding to each x ∈ X, we can find a unique c(x) ∈ C such that d(c(x),x) =
2. Show that d(c(x),0) = 5.

(iv) Continuing with the argument of (iii), show that ci(x) = 1 whenever xi = 1. If
y ∈ X, find the number of solutions to the equation c(x) = c(y) with x ∈ X and, by
considering the number of elements of X, obtain a contradiction.

This result, obtained by Marcel Golay, shows that there is no perfect (90, 278)-code. He
found another case when 2n/V (n, e) is an integer and there does exist an associated perfect
code (the Golay code) - see question 18 below2.

9 [The MacWilliams identity for binary codes]
Let C ⊆ Fn

2 be a linear code of dimension k.
(i) Show that ∑

x∈C

(−1)x.y =

{
2k if y ∈ C⊥

0 if y /∈ C⊥.
(ii) If t ∈ R, show that∑

y∈Fn
2

tw(y)(−1)x.y = (1− t)w(x)(1 + t)n−w(x).

(iii) By using parts (i) and (ii) to evaluate∑
x∈C

∑
y∈Fn

2

(−1)x.y
(s
t

)w(y)


in two different ways, obtain the MacWilliams identity

WC⊥(s, t) = 2− dimCWC(t− s, t+ s).

10 An erasure is a digit which has been made unreadable in transmission. Why are they
easier to deal with than errors? Find a necessary and sufficient condition on the parity check
matrix for it to be always possible to correct t erasures. Find a necessary and sufficient
condition on the parity check matrix for it never to be possible to correct t erasures (ie
whatever message you choose and whatever t erasures are made the recipient cannot tell
what you sent).

2The deep connections between the Golay code and certain Mathieu groups (a class of sporadic finite simple
groups) is beyond the scope of this course. See the great little book From error correcting codes through sphere
packings to simple groups by (I kid you not) Thomas Thompson of Walla Walla College (Carus Mathematical
Monographs, 1983).
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11 (i) Consider the collection K of polynomials a0 + a1ω with aj ∈ F2 manipulated subject
to the usual rules of polynomial arithmetic and to the further condition 1+ω+ω2 = 0. Show
by direct calculation that K× = K \ {0} is a cyclic group under multiplication and deduce
that K is a finite field.

(ii) Repeat (i) where this time the collection K of polynomials is a0 + a1ω+ a2ω
2 + a3ω

3

and the further condition is replaced by 1 + ω + ω4 = 0.
[Of course, this question follows directly from general theory but such direct calculations

are not uninstructive.]

12 (i) Identify the cyclic codes of length n corresponding to each of the polynomials 1, X−1
and Xn−1 +Xn−2 + · · ·+X + 1.

(ii) Factor the polynomials X3− 1 and X5− 1 into irreducibles in F2[X]. Hence find all
cyclic codes of length 3 or 5 and relate them to codes you have already met.

(iii) Show that there are three cyclic codes of length 7 corresponding to irreducible
polynomials of which two are versions of Hamming’s original code. What are the other cyclic
codes of length 7? You should relate them to codes you have already met.

13 Prove the following results:
(i) If K is a field containing F2, then (a+ b)2 = a2 + b2 for all a, b ∈ K.
(ii) If P ∈ F2[X] and K is a field containing F2, then P (a)2 = P (a2) for all a ∈ K.
(iii) Let K be a field containing F2 in which X7 − 1 factorises into linear factors. If β

is a root of X3 + X + 1 in K, then β is a primitive root of unity and β2 is also a root of
X3 +X + 1.

(iv) We continue with the notation of (iii). Show that the BCH code with {β, β2} as
defining set is Hamming’s original (7,4) code.

14 Let ω ∈ F16 be a root of X4 + X + 1. Let C be the BCH code of length 15 and design
distance 5, with defining set ω, ω2, ω3, ω4.
(i) Find the minimal polynomial for each element of the defining set, and then compute the
generator polynomial of C as the least common multiple of these polynomials.
(ii) If possible, determine the error positions of the following received words:

(a) r(X) = 1 +X6 +X7 +X8;
(b) r(X) = 1 +X +X4 +X5 +X6 +X9;
(c) r(X) = 1 +X +X2;
(d) r(X) = 1 +X +X7.
[Your answer to qn 11 (ii) may help with the computations.]
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15 Let C be a binary linear code of length n, rank k and distance d.
(i) Show that C contains a codeword x with exactly d non-zero digits.
(ii) Show that n ≥ d+ k − 1 (the Singleton bound).
(iii) Prove that truncating C on the non-zero digits of x produces a code C ′ of length

n− d, rank k − 1 and distance d′ ≥ dd
2
e.

[Hint: assume the opposite. Then, given y ∈ C, and its truncation y′ ∈ C ′, consider the
coordinates where x and y have 1 in common (i.e. where xj = yj = 1) and where they differ
(e.g. xj = 1 and yj = 0).]

(iv) Deduce that

n ≥ d+
k−1∑
u=1

d d
2u
e

(an improved Singleton bound). Why does (iv) imply (ii)? Give an example where n >
d+ k − 1.
[Remark: Codes for which n−k = d−1 are called MDS (maximum distance separable) codes.
A non-trivial, non-binary example is the Reed-Solomon code and its extensions.]

16 (i) Prove that a binary 2-error correcting code of length 10 can have at most 12 code-
words.

Now let p be a prime congruent to 3 modulo 4 and let Q be the set of squares (=quadratic
residues) mod p, including 0, so that |Q| = p+1

2
.

(ii) Show that Q and Q + 1 have exactly p+1
4

elements in common and deduce that for

any pair of elements mod p, there are p+1
4

translates (sets of the form Q + j) which contain
both.

Consider the code of length p and size p + 1 whose (j + 1)th element is (x0, . . . , xp−1)
where xr = 0 if and only if r ∈ Q + j, (j = 0, . . . , p − 1), and whose (p + 1)th element is
(1, 1, . . . , 1). What is the distance between two distinct codewords? What can one say about
the distance between codewords in the truncation of this code?

(iii) Deduce the existence of a [10, 12] 2-error correcting code.3 See also Sheet 2, question
8. The codes derived this way are not linear.

3The related (11,12,6)-code is called the Paley 2-design. It is named after Raymond E.A.C. Paley, an MIT
mathematician who worked with Norbert Wiener. Paley died in an avalanche in 1933 aged just 26 while
skiing in the Canadian Rockies.
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17 We construct a perfect 3-error-correcting (23,12)-code, starting from the factorisation

X23 − 1 = (X − 1)f1(X)f2(X)

in F2[X] where f1(X) = 1 +X +X5 +X6 +X7 +X9 +X11 and f2(X) = X11f1(1/X) is the
polynomial obtained from f1 by reversing the sequence of coefficients.

(i) Show that if g(X) ∈ F2[X] then g(X)2 = g(X2). What does this tell you about the
roots of g in any field extension of F2?

(ii) Make a list of the powers of 2 mod 23. Deduce that the cyclic code C with generator
polynomial f1(X) has minimum distance at least 5. [Hint: identify C as a BCH code.]

(iii) Show that C⊥ is a subcode of C. Deduce that the parity check extension of C is a
self-dual linear code.

(iv) Show that any self-dual linear code, generated by vectors of weight divisible by 4,
has minimum distance a multiple of 4.

(v) Deduce that C is a perfect 3-error correcting code.
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