
PART II CODING AND CRYPTOGRAPHY
EXAMPLE SHEET 2

The first 12 examples are minimal to cover the course; you are also encouraged to try questions
13–15.

1 In a binary symmetric channel we usually take the probability p of error to be strictly
less than 1/2. Why do we not consider the case 1 ≥ p > 1/2? What if p = 1/2?

2 In an examination each candidate is asked to write down a Candidate Number of the
form 2234A, 2235B, 2236C,. . . (the eleven possible letters are repeated cyclically) and a Desk
Number. (Thus candidate 0004 sitting at desk 425 writes down 0004D − −425.) The first
four numbers in the Candidate Number identify the candidate uniquely. Show that if the
candidate makes one error in the Candidate Number then that error can be detected without
using the Desk Number. Would this be true if there were nine possible letters repeated
cyclically? Would this be true if there were twelve possible letters repeated cyclically? Give
reasons.

Show that if we combine the Candidate Number and the Desk Number the combined
code is 1-error correcting.

3 Into the Stuart’s Handicap at Royal Basket are entered m horses, the probability that
the jth horse wins being pj. The odds offered on each horse are aj-for-1 (meaning a wager
of £x on the jth horse will yield £ajx if the horse wins, and nothing otherwise). Chevalier
de Méré1 bets a proportion bj of his bankroll on horse j, with

∑m
j=1 bj = 1. He seeks to

maximise W =
∑m

j=1 pj log(ajbj). Suggest a motivation for this choice. Solve to find the bj
that maximise W . Show that in the case where all of the odds are equal this maximum and
the entropy H(p1, . . . , pm) sum to a constant.

1The fortunes and misfortunes of a famous gambler, the Chevalier de Méré, were the origin of an algebraic
approach to probability. A noted rake and bon vivant, the Chevalier had made his pile by always betting
small favourable odds on getting at least one six in four tosses of a die, then lost it by always betting small
odds on getting at least one double six in twenty-four double tosses. ‘Il est très bon ésprit,’ wrote Pascal to
Fermat about the Chevalier, ‘mais quel dommage, il n’est pas géomètre.’
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4 If you look at the inner title page of almost any book published between 1974 and 2007,
you will find its International Standard Book Number (ISBN-10). The ISBN-10 uses single
digits selected from 0, 1, . . . , 8, 9 and X representing 10. Each ISBN-10 consists of nine such
digits a1, a2, . . . , a9 followed by a single check digit a10 chosen so that

(*) 10a1 + 9a2 + · · ·+ 2a9 + a10 ≡ 0 (mod 11).

(In more sophisticated language, our code C consists of those elements a ∈ F10
11 such that∑10

j=1(11− j)aj = 0.)

(i) Find a couple of books2 and check that (∗) holds for their ISBNs.
(ii) Show that (∗) will not work if you make a mistake in writing down one digit of an

ISBN.
(iii) Show that (∗) may fail to detect two errors.
(iv) Show that (∗) will not work if you interchange two distinct adjacent digits (a trans-

position error).
(v) Does (iv) remain true if we remove the word ‘adjacent’ ? Errors of type (ii) and (iv)

are the most common in typing.
In communication between publishers and booksellers, both sides are anxious that errors

should be detected but would prefer the other side to query errors rather than to guess what
the error might have been.

(vi) Since the ISBN contained information such as the name of the publisher, only a
small proportion of possible ISBNs could be used3 and the system described above started
to ‘run out of numbers’. A new system was introduced which is compatible with the system
used to label most consumer goods. After January 2007, the appropriate code became a 13
digit ISBN-13 number x1x2 . . . x13 with each digit selected from 0, 1, . . . , 8, 9 and the check
digit x13 computed by using the formula

x13 ≡ −(x1 + 3x2 + x3 + 3x4 + · · ·+ x11 + 3x12) (mod 10).

Show that we can detect single errors. Give an example to show that we cannot detect all
transpositions.

5 Suppose we use eight hole tape with the standard paper tape code (i.e. the simple
parity check code of length 8) and the probability that an error occurs at a particular place
on the tape (i.e. a hole occurs where it should not or fails to occur where it should) is
10−4. A program requires about 10 000 lines of tape (each line containing eight places) using
the paper tape code. Using the Poisson approximation, direct calculation (possible with a
hand calculator but really no advance on the Poisson method), or otherwise, show that the
probability that the tape will be accepted as error free by the decoder is less than .04%.

Suppose now that we use the Hamming scheme (making no use of the last place in each
line). Explain why the program requires about 17 500 lines of tape but that any particular
line will be correctly decoded with probability about 1− (21× 10−8) and the probability that
the entire program will be correctly decoded is better than 99.6%.

6 Determine the set of integers n for which the repetition code of length n is perfect for
the binary alphabet {0, 1}.

7 Two codewords are chosen independently at random from Fn2 with each string equally
likely. What is the expected Hamming distance between them?

2try a place called the ‘College Library’ (ask the Porters where it is).
3The same problem occurs with telephone numbers. If we use the Continent, Country, Town, Subscriber

system we will need longer numbers than if we just numbered each member of the human race.
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8 Let C be the code consisting of the word 10111000100 and its cyclic shifts (that is
01011100010, 00101110001 and so on) together with the zero codeword. Is C linear? Show
that C has minimum distance 5.

9 The original Hamming code was a 7-bit code used in an 8-bit system (paper tape).
(i) Consider the code c : {0, 1}4 → {0, 1}8 obtained by using the Hamming code for the

first seven bits x1, . . . , x7 and then a check digit x8 chosen such that

x1 + x2 + · · ·+ x8 ≡ 0 (mod 2).

Find the minimum distance for this code. How many errors can it detect? How many
can it correct?

(ii) Given a code of length n which corrects e errors can you always construct a code of
length n+ 1 which detects 2e+ 1 errors?

10 We usually work under the assumption that all messages sent through our noisy channel
are equally likely. In this question we drop this assumption.

Suppose that each bit sent through a binary symmetric channel has probability p = 1/3 of
being mistransmitted. There are four codewords 1100, 0110, 0001, 1111 sent with probabilities
1/4, 1/2, 1/12, 1/6. If you receive 1001 what will you decode it as, using each of the following
rules?

(i) The ideal observer rule: find b ∈ C so as to maximise

P(b sent |u received}.
(ii) The maximum likelihood rule: find b ∈ C so as to maximise

P(u received |b sent}.

11 Define A(n, δ) as the maximum size of a binary code of length n with minimum distance
δ. Write down the values of A(n, 1), A(n, 2), A(n, n− 1) and A(n, n). Prove that

2n

V (n, δ − 1)
6 A(n, δ) 6

2n

V (n, 1
2
(δ − 1))

.

12 (i) Construct a (7, 8, 4)-code from Hamming’s code.
(ii) Prove that if δ < n then A(n, δ) 6 2A(n− 1, δ).
(iii) Prove that if δ is even then A(n− 1, δ − 1) = A(n, δ).
(iv) Hence compute A(6, 4).

13 Let C be an (n,m, d)-code. Show that

m(m− 1)d 6
∑∑

d(ci, cj) 6
1

2
nm2

where the sum is over all codewords ci and cj of C. Use this to give an upper bound on
A(n, d) in the case n < 2d.
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14 Your employer announces that he is abandoning the old-fashioned paternalistic scheme
under which he guarantees you a fixed sum Kx (where, of course, K, x > 0) when you retire.
Instead, he will empower you by giving you a fixed sum x now, to invest as you wish. In order
to help you and the rest of the staff, your employer arranges that you should obtain advice
from a financial whizz-kid with a top degree from Cambridge. After a long lecture in which
the whizz-kid manages to be simultaneously condescending, boring and incomprehensible,
you come away with the following information.

When you retire, the world will be in exactly one of n states. By means of a piece of
financial wizardry called hedging, the whizz-kid can offer you a pension plan which for the
cost of xi will return Kxiq

−1
i if the world is in state i, but nothing otherwise. (Here qi > 0

and
∑n

i=1 qi = 1.) The probability that the world will be in state i is pi. You must invest
the entire fixed sum. (Formally,

∑n
i=1 xi = x. You must also take xi ≥ 0.) On philosophical

grounds you decide to maximise the expected value S of the logarithm of the sum received on
retirement. Assuming that you will have to live off this sum for the rest of your life, explain
why this choice is reasonable or why it is unreasonable.

Find the appropriate choices of xi. Do they depend on the qi?
Suppose that K is fixed, but the whizz-kid can choose qi. We may suppose that what

is good for you is bad for him so he will seek to minimise S for your best choices. Show that
he will choose qi = pi. Show that, with these choices,

S = logKx.

15 (i) Show that −t ≥ log(1− t) for 0 ≤ t < 1.
(ii) Show that, if δN > 0, 1−NδN > 0 and N2δN →∞, then

N−1∏
m=1

(1−mδN)→ 0.

(iii) Let V (n, r) be the number of points in a Hamming ball of radius r in Fn2 and
let p(n,N, r) be the probability that N such balls chosen at random do not intersect. By
observing that if m non-intersecting balls are already placed, then an m+1st ball which does
not intersect them must certainly not have its centre in one of the balls already placed, show
that, if N2

n2−nV (n, rn)→∞, then p(n,Nn, rn)→ 0.
(iv) Show that, if 2β +H(α) > 1, then p(n, 2βn, αn)→ 0.
Thus simply throwing balls down at random will not give very good systems of balls

with empty intersections.
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